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ANALYSIS OF THE DYNAMIC BEHAVIOR OF AN INTENSE

CHARGED PARTICLE BEAM USING THE SEMIGROUP APPROACH

I. Introduction

Specific Area of Research

This investigation is concerned with the problem of controlling a

physical system which is most naturally described by a set of partial

differential equations (PDE). The many successes in the application

of the "state variable" or "modern control theory" approach to systems

of linear ordinary differential equations (ODE) have led many

P researchers to look for a practical extension of this theory to accom-

modate systems of linear PDE. As recently as 1978, however, a promi-

nent researcher observed (Russell, 1978:640): "The control theory of

partial differential equations has followed right on the heels of that

for ordinary differential equations, but with slower and heavier

tread."

Models for many physical systems can be brought into the form of

an abscract Caucion problem. Let X be a Banach space, and suppose

is a linear operator from a subset of X into X. If the domain of A

is dense in , then the equation

I-Au()



and is denoted by S F . Existence of the Gateaux derivative of F at
x

x does not imply continuity of the operator F.

On the other hand, one can generalize the derivative of an

operator in a manner which mimics the "differentiability implies

continuity" property of the usual derivative. Suppose for some
A

x -X ,an open subset of V(F) , there exists a SF ZB(X,Y) such
X

that

A

lrn IIF(x+h) - F(x) - 6Fx(h)IjY

jlhl oX- I0hIlx 0

AX

The operator F is termed the Frechet derivative of F at x, andx

the existence of this derivative implies continuity of F at x
A

(Luenberger, 1969: 173). Furthermore, existence of 6F implies

existence of _ F and the two are equal in this case.
X

The Gateaux and Frechet derivatives are often used to construct a

linear approximation of a nonlinear operator. The procedure is

analagous to the familiar first-order Taylor series linearization

techniques for a real function of a real variable.

Consider next a function u: I-X, where I is an interval

(possibly infinite) of the real line, and X is a Banach space. If

the Frechet derivative of u at t ,I exists, then this operator is

called the strong derivative of u at t For this special case, the
A

cumbersome Frechet derivative notation S u is replaced with the

d
usual differentiation symbols -tu(t ) or u (t

11-8



k~~~ 1______f _Dkf = S
Dkk k

OX k X xk *xkn1 2 n

where k=(k 1 ,k .... k) , the k. being nonnegative integers, and,

n

11

Unless stated otherwise, use of the usual differentiation symbols DX

or -- indicates a generalized derivative. Various functional
X 

k

analysis texts cover generalized derivatives in detail (also known as

distributional, and, more generally, as weak derivatives). See

(Curtain and Pritchard, 1977: 136-138; Yosida, 1968: 48-52), for

exam pl e.

Consider now an operator F (not necessaily linear) with domain

V (F) a subspace of a normed linear space, X, and range contained in

a normed linear space Y . Two generalizations of the derivative of a

real function of a real variable are possible, where an appropriate

topological generalization of R is assigned.

First, consider

lim F(x+hv) - F(x)

h-0O h

where x , vDV(F) , and hcR. If the limit exists for every v V(F),

then the operator F is said to be Gateaux differentiable at x . In

this case, the limit above defines a unique element in Y for every

v+A3(F) . This mapping is called the Gateaux derivative of F at x

11-7



denoted by C(X,Y) , or by C(X) if X=Y . For examples and further

discussions of closed operators the reader is referred to (Curtain and

Pritchard, 1977: 45; Belleni-Morante, 1979: 60-63; Taylor and Lay,

1980: 208-217).

Derivatives. Various generalizations of the usual derivative of

a real function of a real variable exist, depending on the topological

properties assigned to the underlying spaces. Three specific types of

derivatives are of use in the application of semigroup theory:

(1) generalized derivatives, (2) Gateaux derivatives, and (3) Frechet

derivatives. The Frechet derivative of a function whose domain is an

interval of the real line is known as a strong derivative. Since the

strong derivative is frequently used in semigroup theory, it is also

discussed below.

Let C0 (2) denote the set of all functions which are

continuous, have continuous partial derivatives of any order, and

which have support bounded and contained in Q, an open subset of Rn .

The generalized derivative of any function fcLI (Q) ( f only
0c

"locally" belongs to L' (2) , i.e., f is defined on Q and is in

L' (K) for every Lebesgue measurable set K whose closure is

contained in 2 ), if it exists, is defined to be the function g such

that

ff(x)Dk, (x)dx = (-1) k g(x) (x)dx

k
for all £ 0 (2) The differentiation operator D is defined as

11-6
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the following two statements hold (Naylor and Sell, 1982: 240):

(i) If T is continuous at any point x X, then it is

continuous at every x6X.

(ii) T is bounded if and only if it is continuous.

Although bounded linear operators are simpler to analyze,

unbounded linear operators frequently appear in applications. The

"derivative" operator, for example, is often unbounded, depending upon

the domain and codomain chosen for a specific model. In some cases an

unbounded linear operator enjoys properties similar to those of a

continuous one, in which case it is termed a closed operator. The

l'e definition of a closed operator is often stated in terms of its graph,

but an equivalent and more practical definition, in the context of

metric spaces, is the following:

Definition 2.a (Closed Operator)

Let T:D(T)CX-Y be an operator with x , Y Banach spaces.
Suppose 1.x } is a sequence in D(T) with the properties

n

(i) x -x
n

(ii) Tx n-y

The operator T is closed if xEV(T) and Tx=y for every
such sequence in D(T)

The set of all closed linear operators defined on a subset of the

Banach spe e X and with range contained in the Banach space Y is

11-5
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Linear Operators on Banach Spaces. There are several key

concepts involving linear operators whose domains and codomains are

subsets of normed spaces. A bounded linear operator T :X-Y , X, Y

Banach spaces, is one for which a nonnegative real number K exists

such that

for all fsX. The set of all bounded linear operators from X into Y

is itself a Banach space and is denoted by B(X,Y) , or, if X=Y, by

B(X) The infimum of the set of all constants K satisfying the

above inequality is the norm of T on the Banach space B(X,Y) or

B(X)

Continuity. The notion of continuity of a function is

fundamental in semigroup theory analysis. The following definition is

sufficiently general for subsequent discussions:

Definition 2.,j (Continuity)

Let X , Y be normed linear spaces, and suppose F
represents a function from a subset D of X into Y
i.e., F:DCX-Y . F is said to be continuous at the point
x in D if for every real number £>O there exists a real
number 5 such that

IIF(x) -F(x 0 )IIy < c

for all xcD satisfying

Mappings from an interval I on the real line into a Banach space

11-3
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Various linear spaces are used in this work. The set of real

numbers and the set of complex numbers are symbolized by R and C

respectively, and these are the only scalar fields used. The symbols

R and C denote n-fold Cartesian products of the linear spaces R

and C (with the usual addition and scalar multiplication

definitions). The letters I and S1 are used to mean an interval of
Rn

R or R , respectively, either finite or infinite - i.e.,

I = (a,b)(R , and 2={xRn :x=(x .. Xn ),ai<xi<bii=l...n(R n

with a , a.cR or -a, and bbER or + . Occasionally Cartesian11

products of linear spaces are denoted by the product symbol, I.

Spe cifiically, letting {X be a set of linear spaces, thei i=1n n
Cartesian product of these spaces is written as II X. . The most

common function spaces used in this report are the Lebesgue and

Sobolev spaces, Lp (Q) and H (2) . The Lp  spaces consist of

(equivalence classes of) functions f such that 1 f I is integrable in

the Lebesgue sense. The Sobolev spaces, Hq (2), consist of the sets

of functions f whose generalized derivatives (discussed below) up to

and including order q are in L2 (si) . For further discussion of

Lebesgue and Sobolev spaces, the reader is referred to (Royden, 1968:

Ch 6) and (Yosida, 1968: 55), respectively. The Sobolev spaces are

Hilbert spaces for all integer q>O, as is L2 (2) , and LP (2) is a

Banach space for all integer p>l. The norm of a function f in these

normed spaces, or any other normed space, is symbolized by 11f L x

where X represents the space, or by 11f 1, if it is clear which space

is intended.

11-2



If. Pertinent Results from Operator SemigrouD Theory

Introduction

Some known results from the semigroup theory of operators

(hereafter referred to as semigroup theory) are now presented. The

theory has been rigorously developed by Hille and Phillips (1957).

More recent texts have been written which emphasize the practical

aspects of the theory (Butzer and Berens, 1967; Belleni-Morante, 1979;

Curtain and Pritchard, 1977; Curtain and Pritchard, 1978; Davies,

1980; Fattorini, 1983; Pazy, 1983; Walker, 1980). The intent of this

f qf chapter is to state notation, definitions, and specific results

pertaining to semigroup theory and the abstract Cauchy problem which

are relevant to an analysis of the beam models developed in the

following chapter.

Fundamental Notation and Definitions

Functions and Spaces. Let A, B be arbitrary sets. The notation

f:A-B is used to denote a function f with domain D(f) equal to A

and range R (f) a subset oi. the codomain, B . The term operator is

used to denote any function whose domain or codomain (or both) is a

space of functions.

II-1



these readers should follow the remaining chapters with little diffi-

-: culty.

Chapter III introduces various dynamic models of charged particle

beams. The sophisticated "microscopic ' models are presented first,

and a linearization is performed in order to bring this class of mod-

els into the abstract Cauchy problem form. "Macroscopic" descriptions

are then discussed in general, and a linear, single degree of freedom

model is derived. Finally, a tractable model is developed in detail

in order to illustrate semigroup theory techniques analytically.

An analytical solution of the "electrostatic approximation model"

is thoroughly developed in Chapter IV. Various simplifying assump-

tions are introduced in Chapter III in the development of this model

which would not necessarily be required if a numerical solution were

sought. It is considered far more useful from a researcher's point of

7e view, however, to develop a closed-form solution to the electrostatic

approximation model thoroughly than to resort to a numerical solution

of a more complicated model.

A summary of dissertation research results is presented in the

concluding chapter, along with some suggested further areas of

research.

1-7
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nuclear fusion research has been treated in a manner similar to that

herein (cf. Wang and Janos, 1970). The plasma confinement problem

differs considerably from the beam dynamics problem, however. The

plasma in Wang's work is assumed to be neutral, while a charged parti-

cle beam is a nonneutral plasma. Furthermore, the configuration of

the plasma confinement problem does not at all match that of the beam

problem, where a large velocity field in one direction is assumed.

Nonetheless, the starting point for both plasma confinement in Wang's

paper and the beam dynamics analysis in this dissertation is the

Vlasov-Maxwell system of equations.

Overview

Three major topics are presented in the sequel: (i) a summary of

relevant mathematical concepts, (2) a description of various mathe-

matical models of the dynamics of a charged particle beam, and (3) an

illustration of the theory.

The purpose of Chapter II is twofold. First, it provides readers

with functional analysis and operator semigroup theory in their back-

grounds a summary of notation, definitions, and results in these

areas. Second, readers of this chapter with finite-dimensional modern

control theory in their backgrounds are provided a glimpse of how the

finite-dimensional theory generalizes to the iefinite-dimensional the-

ory. For example, a real matrix operator of order i is discussed as a

special case in the subsection "Some Familiar Operators." Armed with

these insights, and intuition provided by finite-dimensional theory,

1-6
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-- primary goal of this dissertation is to advance the development of

semigroup theory techniques by attacking a specific initial value

problem: the dynamic behavior of an intense charged particle beam.

Intense beams of charged particles are beginning to be used in a

wide variety of applications (Septier, 1983: xii). The dynamic behav-

* -ior of such beams is quite complex because electromagnetic fields are

affected by not only the positions of the particles, but by their

velocities as well. Frequently the Vlasov-Maxwell system of PDE is

chosen as a starting point for analysis of a collection of charged

particles. Simplifying assumptions are often appropriate, but the

resulting models are generally systems of PDE also. Analysis of the

dynamic behavior of intense charged particle beams is an excellent

choice, then, for an application of semigroup theory since (1) such

beams are useful, and, (2) models of these beams are inherently dis-

0O tributed parameter systems of equations.

This dissertation establishes a framework for analyzing the beam

dynamics problem. In the figure on page 1-5 the basic problem is

divided into two sub-problems: (1) the control problem, which is con-

cerned with modifying the dynamic behavior to achieve some desired

state, and (2) the observation problem, which is concerned with deter-

*g mining the present state of the beam. The foundation laid in this

work is original and should serve to direct and organize beam dyamics

". - research in the future.

*Some articles exist in the literature which are related to this

research. For example, the plasma confinement problem associated with

1-4
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A = Z Ak(X) -  + (x)
k=1 k + X k

k thand where A (X) = {aij (x)} and B(x) = (x)}are n -order
k i

matrix functions defined in Rm.

It has been shown that ordinary, partial, stochastic, and delay

differential equations can all be accommodated by the application of

semigroup theory to initial value problems on a Banach space (Curtain

and Pritchard, 1978: Ch 8). Belleni-Morante (Belleni-Morante, 1979:

Ch 8-13) discusses in detail the following specific problems: heat

conduction in rigid bodies, one-speed neutron transport, kinetic

theory of vehicular traffic, the telegraphic and wave equations, the

one-dimensional Schr46dinger equation, and stochastic population

theory. Additionally, Markov processes were studied from the

semigroup theory point of view by Hille, Yosida and Feller in the

early 1950's (Fattorini, 1983: 98). These examples, and many others

that can be found in the recent literature, illustrate the wide

variety of physical problems that can be formulated and analyzed

within the context of semigroup theory.

This diversity of applications is encouraging, but far more

practical applications are needed. Fattorini (Fattorini, 1983: xx)

states, "Nowadays, many volumes devoted ... to the treatment of

semigroup theory exist... In contrast, accounts of the applications to

particular partial differential equations ... are scarcer..." This

suggests that more applications should be attempted in order for the

theory to develop into a practical, working body of knowledge. The

1-3
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along with an initial condition,

u(O) =u

is termed an abstract Cauchy problem.

Analysis of the abstract Cauchy problem can be performed with the

semigroup theory of operators. This approach has many parallels with

the modern control theory approach to systems of linear, time

invariant, first-order ordinary differential equations:

x(t) = Ax(t) t>O

4 where A is an n by n real matrix. For example, the state transition

~At
matrix, e , for such a system of ODE, is an element of a semigroup

of operators {eAt} generated by A , where t>O . Another parallel

exists in that the semigroup theory emphasizes spectral properties of

the operator A in the abstract Cauchy problem. This is, of course,

analogous to the modern control theory emphasis on the eigenvalues and

eigenvectors of the matrix A . These parallels provide a compelling

case for considering an appropriate extension of modern control theory

to be analysis of the abstract Cauchy problem through the semigroup

theory of operators. This point of view is adopted in the present

work.

Only linear systems of partial differential equations are

considered herein. In fact, all models are of the form

Yw(x,t) = Aw(x,t)

where w(x,t)ERn x=(x .x ) Rm , A is given by

1-2
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Spectral Analysis Definitions. It is well known that the

eigenvalues and eigenvectors in a finite-dimensional system of linear,

first-order, time-invariant, differential equations are instrumental

in an analysis of such a system. In infinite-dimensional systems the

eigenstructure is equally important.

Let A:D(A)-x, D(A)cx , be a linear operator with X a Banach

space. The set of all complex numbers can be partitioned into two

subsets according to whether AI-A satisfies the following three

conditions for A C (Yosida, 1968: 209; Curtain and Pritchard, 1977:

163, 164; Naylor and Sell, 1982: 414-429):

(i) (Ai-A)-1 exists

(ii) (Ai-A)-' is continuous

(iii) the range of AI-A is dense in X

The set of all AcC such that these conditions are met is called the

resolvent set, while the set of all other complex numbers is called

the spectrum. The resolvent set and spectrum are denoted by p (A)

and a (A) , respectively.

The spectrum of a linear operator A defined on a subset of a

finite-dimensional space E , with range contained in E, consists of

only those AEC such that XI-A is not injective. Similarly,

AI-A can fail to be injective for some values of A , but, unlike

the finite-dimensional case, the spectrum may contain other complex

numbers. In fact, there are three disjoint subsets of a (A) . The

point spectrum consists of those XEC for which Xi-A is not

injective. The continuous spectrum is made up of those X for which

11-9
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- I  exists but is not continuous, and, for which the range of

Xi-A is dense in X. Finally, the residual spectrum consists of

those X for which (XI-A) - ' exists and is continuous, but such

that the range of XI-A is not dense in X

Let the notation R(z ,A) denote the operator (zI-A) - ' for

any zZ-o (A) . The following two facts are established in

(Belleni-Morante, 1979: 62,63):

(i) If A is a closed linear operator (AeC(X)), Ab is a
bounded linear operator ( AbB(X)), and if the domain
of Ab contains the domain of A , then A+AbC(X) 

(ii) If for any z 0 FC ,R(z 0 ,A)EB(X) , then AEC(X)

These two facts are used frequently in practical applications of the

semigroup theory of operators. For example, see (Belleni-Morante,

1979: 179) where the first fact is used in proving an important

perturbation theorem.

The set of closed linear operators is frequently partitioned in a

manner which simplifies semigroup theory discussions. The four

classes of interest are denoted by G(I,S), G' ( ,S) , (M,S) , and

G' (>, 3) and are defined as follows (Belleni-Morante,

1979:140,141,145):

Definition 2. (G-Classes)

Let AcC(X) , D(A) dense in X, zEC, and ;=Re(z).

Then A is in the class

(i)6(1,3) if rz:>}Co(A) and (zA

for all z such that ;>3

6'(ii) (1,3) if {z:j; ,>3 C.C (A) and JR(zA)

II-10



for all z such that f>8

(iii) C(M,$) if fz:>}Cp(A) and for any
integer j=l,2,...

L R (z A ) j  j < M

for all z such that C>B

(iv) G'(M, ) if Iz:i; >S}Cp(A) and for any
integer j =1 , 2 ...

_(jz A-,<

for all z such that W >

The various mathematical symbols which have appeared in this

section are summarized in Appendix A. With these fundamental

definitions and results in mind, attention is now turned to the

abstract Cauchy problem.

The Abstract Cauchv Problem

Mathematical models are frequently developed to predict the

dynamic behavior of certain variables in a physical system. In many

5cases the model is finite-dimensional and one is interested in knowing

what values in R each variable assumes at any given time. In

distributed systems, however, the variables of interest can be

elements of a function space at each instant of time. Quite often a
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mathematical model of a physical system, whether finite or infinite-

"* dimensional, can be expressed as an abstract Cauchy problem.

Definition 2,A (Abstract Cach Problem) "

let the linear operator A:V(A)-x have domain dense in the
Banach space X . The abstra Cuchy roblem consists of
finding a solution to the differential equation and initial
condition I

u(t) = Au(t) (t>0) (2.1)

u (0) = u °  u EX (2.2)

where d- u(t) denotes the strong derivative.

Definition 2.5 (Solution)

A solution of the abstract Cauchy problem (2.1), (2.2) is
any continuous function u:[0,o)-X which

(i) is continuously differentiable at every t>0

(ii) is an element of D0(A) for every t>0 , and

(iii) satisfies equation (2.2).

In applications, there are usually further mathematical require-

ments that must be met, rather than simply the existence of a solution

for a single initial condition. The following definition is crucial

to the development of useful solutions to the abstract Cauchy problem

(see Fattorini, 1983: 29,30):

11-12



Definition 26(elPosed)

The abstract Cauchy problem (2.1), (2.2) is well poed in
if the following two conditions are satisfied:

(i) Existence of solutions for sufficiently many
initial data: There exists a dense subspace D

of X such that, for any u°cD , there exists
a solution of the abstract Cauchy problem.

(ii) Continuous dependence of solutions on their
initial data: There exists a nondecreasing,
nonnegative function C(t) defined in t>O

such that

lu(t) < IIu(O) (2.3)

for any solution of the abstract Cauchy prob-
lem.

These requirements are similar to those generally deemed essen-

tial in order for a mathematical model to correspond to physical real-

40 Dity (e.g., see Courant and Hilbert, 1962: 227): (1) existence of solu-

tions, (2) uniqueness of solutions, and (3) continuous dependence of

the solution on the initial data. For instance, the well posed Cauchy

problem has the existence-of-solution property for a particular set of

initial conditions. (However, a solution is not always guaranteed to

exist for every uO 'X, but only for every u in a dense subset of X.)

Furthermore, equation (2.3) ensures that any solution of a well posed

abstract Cauchy problem is unique. To demonstrate this, let v, w be

solutions of

d u(t) Au(t) (t>O)

u(0) u °  U°LX
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and consider the vector v-w . Clearly, v-w is also a solution,

and, since (v-w) (0)0 , we have from equation (2.3)

from which it follows that v=w Heuristically, the third

requirement is that two initial conditions which are "close" to each

other should yield solutions which are also "close." The second po-

sedness condition ensures this continuous dependence fQ solutions 2A

the initial data.

Any solution of a well posed abstract Cauchy problem with initial

condition lying in D (the set referred to in the first posedness con-

dition) uniquely defines an operator S(t) :D - X as

u(t) = S(t)u 0

for t > 0, with u(0) = u ° 
. Furthermore, S(t) is necessarily a

linear, bounded operator in D (by the linearity of A in equation

(2.1), and by the second posedness condition, respectively) and, as D

is dense in X ,S(t)can be extended to all of X . The operator-valued

function S is called the propagator for the solution of the well

posed abstract Cauchy problem.

Well posedness of the abstract Cauchy problem supports a notion

of "solution" for any uLX . Indeed, suppose the sequence

*u I C D is such that u -u . Well posedness provides that the
n n

functions S( )u nC(L[O,°) ;X) Cr\c (L0,-) ;X) converge uniformly to
n

S(-)u EC([O,-);X) which may not be a solution in the sense of

Definition 2.5, but which will be called a zeneralized solution if

11-14
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0u E£D (this is the same as the usual notion of a weak solution

see (Fattorini, 1983: 30,31)).

It is difficult, in general, to determine whether an abstract

Cauchy problem is well posed and, hence, whether there exists a propa-

gator for an arbitrary mathematical model with the form of equations

(2.1), (2.2). If the linear operator A in equation (2.1) satisfies

certain conditions, however, the propagator can be shown to exist and,

iterative schemes are known for its construction. Specifically, if

AcB(X), or if A is in any of the C-classes defined previously, then

the propagator exists and can be constructed by an iterative process.

The details of this assertion are now presented.

II-14A
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whose every element is invertible. (S 2 a ) introduced above is not2 2

a group since only the identity element of S is invertible. By2

enlarging S to include all rational numbers greater that zero, a
2

group can be constructed. For the set S3 = {r:r = p/q,p,q = 1,

2,... it is straightforward to show that (S 3 a) is a group.

Consider now the set S = "5(t):t>0} where S is the

propagator of a well posed abstract Cauchy problem. Let a binary

operation c- be defined on SxS by

a(S(t ),S(t2)) = S(t )OS(t ) (t )t >0)
12 1 2 1 2=

where the symbol " o represents the composition of two functions.

The following theorem summarizes several important properties of the

propagator S (Fattorini, 1983: 63):

Theorem 2.1

If S = S(t) t>O} , where S is the propagator for a well
posed abstract Cauchy problem, and a is the binary
operation defined above, then

(i) (S, a) is a monoid

(ii) for t ,t >0 S(t +t ) = S(t )OS(t )
2 1 2

(iii) the operator S:[0,c) B(X) is strongly
continuous at every t>0 , and strongly continuous
from the right at t=O.

(iv) there exist nonnegative constants M, 3 such that

St
JIS(t)II < Me

The term strongly continuous group is defined in a similar

fashion. Consider a set S' - §S(t):tsRl , and let a' be the
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binary operation defined by

a' (S(t 1),S(t )) = S(t )OS(t2

If this composition satisfies

S(t +t ) = S(t )OS(t )
1 2 1 2

for all t t2 R and if S is strongly continuous at t=O , then

S is referred to as a stronglv continuous group (Curtain and

Pritchard, 1977: 149; Fattorini, 1983: 81).

The following theorem is the most important result in the study

of the abstract Cauchy problem. It provides necessary and sufficient

conditions, in terms of the operator A and its resolvent R(zA), for

the abstract Cauchy problem to be well posed (Fattorini, 1983: 65).

Theorem 2.

Let the operator A in equation (2.1) be closed. The
abstract Cauchy problem (2.1), (2.2) is well posed and its

propagator S satisfies

I~s(t )11 < Me St  (t>O)

if and only if AEG(M,3).

A similar result for che abstract Cauchy problem on the whole real

line exists (Fattorini, 1983: 72):
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Theorem 2. 3.

Let the operator A in the abstract Cauchy problem

U ( Au t)-0 t0 (2.4)

u(O) = uO u°0 (A) (2.5)

be closed. This Cauchy problem is well posed and its
propagator S satisfies

IS (t)JI < Me _o <t<CO

if and only if Ac '(M,3).

It is useful now to state a definition and some results from

semigroup theory. Theorems 2.2 and 2.3 are usually difficult to apply

directly, but the results below improve the situation somewhat.

Definition 2_7 (Infinitesimal Generator) (Curtain and
Pritchard, 1977: 150,151; Fattorini, 1983: 81)

Let S = "S(t) :t>O}CB(X) be a strongly continuous
semigroup. The operator A defined by

Au lir S(t)u-u
t O+  t

whenever the limit exists, is the infinitesimal generator of
S.

The phrase , A generates a strongly continuous semigroup S " is I

frequently used to mean that A is the infinitesimal generator of S.

The following two theorems are proven in (Fattorini, 1983: 81-83):

11-19
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Theorem 2.4 1

The linear operator A generates a strongly continuous
semigroup S(t) :t>O} , with the property

if and only if A (MB)

Them 2.

The linear operator A generates a strongly continuous group
'S(t) :--<t<: , with the property

1st1 <MeSt

if and only if AG'(M,3)

Summarizing the results thus far, it is apparent that the problem

of showing the operator A in equation (2.1) (equation (2.4 )) to be an

element of 6 (M,') ( G' (m>,3) ) is equivalent to showing the

(corresponding) abstract Cauchy problem to be well posed. In order to

go further and actually solve a well posed Cauchy problem, one needs

to construct the semigroup generated by A since this semigroup is the

propagator for the problem and provides the solution u(t) = S(t)u 0

of equations (2.4) and (2.5). Several special cases are now

considered for the operator A in equation (2.4).

A.: B (X) . Construction of the semigroup operator is most easily

accomplished when A in equation (2.4) is an element of B(X) . (It

can be shown that AeB(X) implies that AEG' (M,3) 3 ) The following

result follows directly from a theorem in (Belleni-Morante, 1979:
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131):

Theorem 2.

if A_ B (X) , then A generates the strongly continuous group
S(t) :-<t<'O: with S(t) defined by

n
lira tJAj

S ( t ) = n_ _ _

j=0

It can also be shown (Belleni-Morante, 1979: 130-133) that

satisfies

II ( t I < elIAI0<titl

In light of Theorem 2.5 and the foregoing, it is clear that the

solution of the abstract Cauchy problem (2.4), (2.5) is given by

u(t) = S(t)uO

for any u X .

A-6(1,O) , A,-' (1,0). Consider next the case where AcG(1,O)

in the Cauchy problem of equations (2.1), (2.2). Define a sequence of

operators, KS (t), n-i by
n _~

s (t) = A )- (t>O, n--1 ,2 .. )
n
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P(x,'t) n(x,t) J f (xpt)d 3 P (3-3)

= 1 f 3

V(x,t) n(x,t)f v(p)f(xpt)d3 P (3.4)
3  

,

where V(p)=p/(m . The current density vector, J(xt) , is given

by

J(x,t) qV(x,t) _j

Finally, the pressure tensor, P , is defired as follows:

P(x,t) = f LP-P(x,t)]v()-V(x, t)] Tf(x,p,t)d p (3.5)

The preceding definitions can all be expressed rigorously within

the context of probability theory. Let C2=R , and denote the Borel

field (Maybeck, 1979: 62) associated with R6 by F. Define next a

set function Pt for every tc[O,T] by

Q ((x,£) :(x,p)-B}) = kff(xpt)d3xd3p

B

where B5 F , and f is a distribution function as defined above. For

each tK[OT], the triplet (C ,F,p t ) forms a probability space

(Maybeck, 1979: 64). Defining a new function f* by

f (x,p,t) = -f(xpt)

111-6



effects. This approach becomes unwieldy for very large numbers of

particles, but it is sometimes taken (Cohen and Killeen, 1983: 59).

Generally, however, only macroscopic quantities are of interest, as

opposed to the specific path of any single particle. Consequently,

models of a plasma usually incorporate probability concepts.

The kinetic theory of plasmas is frequently developed by use of a

distribution function* (Davidson, 1974: 11, 12; Reif, 1965: 494, 495;

Krall and Trivelpiece, 1973: 5,6; Chen, 1974: 199, 200). Suppose

there exists a collection of N charged particles and a function,

f:R6x[o,T]-[O,c). f is called a distribution function if the pro-

duct f(x,p,t)d 3 xd 3 p yields the mean number of particles in the

hypercube d 3 xd 3 p centered at (x,p) at time t

By integrating out the dependence of f on the momentum coordinates,

the number density, n (x, t) , is obtained:

I3 n(x,t) f f f(x,p, t ) dp (3.2)

R3

If the particles each have charge q, then the charge density,

G(x,t) , is given by

G(x,t) = qn(x,t)

The macroscopic moment r, P(xt) , and the macroscopic

velocity vector, V (x,t) , are defined as follows:

*The reader is cautioned that the phrase "distribution

function" in plasma physics literature is not synonymous
with a "cumulative distribution function" in probability
theory.
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Notation and Definitions

Most of the notation in this chapter corresponds to that commonly

found in plasma physics texts. A summary is given in Appendix B, but

for the reader who is unfamiliar with this area, a discussion of some

of the pertinent notation and definitions is now given.

S Particle. Consider a particle of mass m and charge q in

the presence of an electric field K and magnetic field B . The force

on the particle exerted by these fields is given by

F(t) = q[E(x,t) + v(t)xB(x,t)]

0 where v(t) denotes the velocity vector of the particle. The relativ-

istic version of Newton's second law of motion is

d p(t) = F(t)

dt

where p (t) is the mechanical momentum vector of the particle. The

momentum vector is related to v(t) by

p(t) = ymv(t) = (1-82)- mv(t) (3.1)

where =l = v(t) /c , and c is the vacuum speed of light.

Plasma. Now consider a collection of charged particles. It is

always possible to write the equations of motion for each individual

particle including inter-particle forces as well as external field

111-4l
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to the summary of notation given in Appendix B in lieu of reading the

following section.

The most complete description of a collisionless plasma consists

of the self-consistent Vlasov and Maxwell equations. Models developed

directly from these are known as microscopic descriptions (Davidson,

1974: 10). These equations are presented and a linear perturbation

model is developed. This model is then shown to have the structure of

an abstract Cauchy problem.

By "taking moments" of the Vlasov equation one can develop a

chain of equations which are commonly referred to as macroscopic

descriptions (Davidson, 1974: 14). The continuity and momentum

equations are the first and second set of equations in the chain, and

these are presented following the microscopic model discussions.

The microscopic and macroscopic descriptions are stated in Car-

S tesian coordinates for ease of exposition, but typically a cylindrical

coordinate system is more practical when invoking symmetry conditions.

Therefore, a coordinate transformation is performed on the macroscopic

equations. This facilitates development of a particular single degree

of freedom nonlinear model. This model is linearized about an appro-

priately chosen equilibrium, and the resulting linear model is also

shown to have the abstract Cauchy problem structure.

The final section is concerned with a further simplification of

this single degree of freedom model which isolates certain dominant

dynamic behavior.
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of modeis with the abstract Cauchy problem form. Successful develop-

ment of such models would invite application of the growing body of

infinite dimensional modern control theory to particle beam dynamics

problems.

The inter-particle forces are typically classified as either col-

lective or collisional forces (Lawson, 1983: 2). Collective forces

are those which depend only upon an average of the fields of many

neighboring particles. Collisional forces, on the other hand, depend

upon the detailed structure of the charge distribution. The models

developed in this chapter deal only with the case in which collective

forces dominate. Collisional forces are not considered since particle

accelerators are generally designed to have low collisional frequen-

cies.

The term "plasma" has been defined in various ways in the litera-

- ture (Lawson, 1977: 3). In the present work, any collection of

charged particles whose collective forces are not negligible, when

compared with forces exerted by external fields, is termed a plasma.

In many applications particle beams are produced and transported

some distance in a vacuum. All models in this chapter are developed

under this assumption. Consequently, the assumptions made thus far

can be simply stated as follows: this chapter is devoted to the pres-

entation and development of dynamic models of a collisionless non-

neutral plasma in a vacuum.

Overview. Notation and definitions from electrodynamics and

plasma physics are stated first. Since the notation is essentially

standard, the reader familiar with these two areas may wish to refer

111-2
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III. Modelling the Dynamic Behavior of

Intense Charged Particle Beams

Introduction

Problem Description and General AssumDtions. In this research

charged particle beam is considered to be any collection of charged

particles having gross motion approximately parallel to some curve.

The curve is called the axis and, in general, the cross-sectional

shape of the beam varies along the axis. A wide range in complexity

0 of beam models exists due to the fact that the particles are charged.

For a sufficiently low number density, the trajectories of

charged particles are unaffected by the presence of other particles

around them. In this case, the modelling process is relatively

straightforward since overall beam behavior can be inferred from

motions of individual particles. The study of trajectories of parti-

cles in low density particle beams is referred to as "charged-particle

optics" (Lawson, 1977: 3) and is not considered here.

Inter-particle forces cannot be ignored at high number densities;

far more complex and interesting models are required in this case.

Most often these models consist of partial differential equations.

Consequently, the study of the dynamic behavior of beams whose inter-

particle forces cannot be neglected is a ripe area for the development

111-1
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devoted to presenting (and, in some cases, developing) some of these

models.

I
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The spectrum of A can be shown to be the empty set in this case.

The Convection Operator (Belleni-Morante, 1979: 340-344).

Consider next the operator A:D(A)-X defined by

Af = -d f
1 dx

with X=L 2 (-oo) and dx L ( It can be shown

that Ac' (1,0) and, further, that the strongly continuous group

£S(t) :-c<t<-}generated by A is characterized by

S(t)u0 (x) = u0 (x Vt)

Summary

This chapter has provided a necessary frame of reference for the

next three chapters. Some notation and fundamental definitions were

presented first, along with several references. Next the structure

and some key concepts associated with the abstract Cauchy problem were

introduced. The link between operator semigroup theory and the Cauchy

problem was then established, along with several important results.

Finally, some familiar operators were covered in the semigroup theory

setting.

3 indicated in the first chapter, a wide variety of partial

differential equation models have been established to describe the

dynamic behavior of a beam of charged particles. The next chapter is
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illustrate the wide applicability of the theory.

nth-order Matrix. Let A=A, an n -order matrix of real numbers

with V(A) = Rn = x . In this case, the associated abstract Cauchy

problemn

da x(t) = Ax(t)

x(O) X

with x = (x 1 ,x , ... x) , is a finite-dimensional model

(dim(X) = n), and A B(X) . Consequently, by Theorem 2.6, A 7

generates the strongly continuous group {S(t):- o<t<-} where

n

S(t) = lir! tAJ_ Atn-+ °  j ! e.

j=0

The spectrum of A consists of the n (or fewer) complex numbers X

ror which

det(XI-A) = 0

In Integral Operator (Belleni-Morante, 1979: 136-138). Let the

operator A be def ined by

Af = (x-y)f(y)dy

0

for every fEX = C[,1]. It is not difficult to show that AcB(X)

and that A <I The strongly continuous group of operators

fS(t):--<t<-} is defined by

S(t)f= f + /r- sin Af + 12 Cos t  A2f"

121 VT-.
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- The operator A is linear and has domain, D(A) , in the Banach space

X . The function g takes on a value in X for each t>O The

following theorem provides sufficient conditions for this problem to

have a unique solution (Fattorini, 1983: 87):

Theorem 2.j2

Let the operator A in equation (2.6) be an element of the
class G(M,3) . If g is a continuously differentiable
function on the interval [0,T] , then the unique solution
of equations (2.6), (2.7) is given by

t

u(t) = S(t)u ° + fS(t-s)g(s)ds (O<t<T)

0

where fS(t) :t>OI is the strongly continuous semigroup
generated by A.

Some Familiar Operators

Various operators which are familiar to engineers and physicists

have been analyzed in the literature from the semigroup operator point

of view. Results are now given for the following operators: (1) an
th

nth-order matrix of real numbers, (2) a specific integral operator,

and (3) the (scalar) convection operator. The first example involves

a bounded operator defined on a finite dimensional space, the second a
II

bounded operator defined on an infinite dimensional space, and the

final example deals with an unbounded operator defined on an infinite

dimensional space. These specific operators are chosen solely to
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-'"following result is very practical (Belleni-Morante, 1979: 179-182):

Theorem 2.1

If A = Ab+A U AbcB(X) , and A uG(M, ), then

A G(M,Z+M Ab ).

As a result of this theorem, one need "worry" only about the

"unbounded portion" of an operator, usually the derivative terms. The

strongly continuous semigroup for the operator A satisfying this

theorem is constructed by an iterative process. Let {S(t) :t>O} be

the semigroup generated by A and define the sequence {Z (t)}u'i j=l

by

Z0 (t)f = S(t)f (t>O)

.t

Zn (t)f = S(t)f + fS(t-s)AbZn(s)f(s)ds (t>O, n=1,2 ....)

0

The strongly continuous semigroup {Z(t) :t>O} generated by A , then,

is defined by

Z(t)f = lim Z.(t)f (VfcX, t>O)

The final result in this section is a theorem concerning the

inhomogeneous problem:

d.u(t) = Au(t) + g(t) (2.6)
dt

u(O) = U (2.7)
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(2.4), (2.5)) is given by

u(t) Z(t)u

for any u cV(A) and for all t>O (-<t<c ).

Further Practical Results

Three results which are often of use in the application of the

theory are now introduced. The first is generally useful if the

underlying space X is a Hilbert space and the norm corresponds to the

energy of the system.

Theorem

Let A:D(A)x , where D(A)CX and D(A) is dense in the
Hilbert space X . Then AEG(I,:) if and only if

(i) (zI-A)D(A)=x Vz such that Re(z)>-

(i)Re(Af,f)<:8 Ilf 2  VfcD(A)

A densely defined linear operator A satisfying condition (ii) with

3=O is called dissipative; also, if -A is dissipative then A is

called accretive. For further discussion in this area and a proof of

Theorem 2.10, refer to (Belleni-Morante, 1979: 142-145).

Often a complicated operator A can be broken into two opeators:

A = A b +A . If Ab is chosen such that it is a bounded linear

operator, defined on all of the underlying Banach space X, then the

11-24
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AEG(M,3), AEG' (M,). The proofs of Theorems 2.7 and 2.8 are

easily modified for AcG(M,O) or AEs' (M, O) . Furthermore, if

AE (M,2) (AE6' (M,3)) then the operator A1 , defined by

A = A-$I

is in the class G(M,O) ( G' (M,O) ). Consequently, the following

theorem can be proven with little additional work (Belleni-Morante,

1979: 159):

Theorem 2.,

If AcG(M,5) then A generates the strongly continuous
semigroup {Z(t):t>O} with Z(t) defined by

Z(t)u = e S(t)u (VucX, t>O)

where (S(t):t>O} is the semigroup generated byIeA =A- .

The analogous result for AEG' (M, ) follows immediately. The norm of

Z(t) satisfies

jjZ(t)j[ = Me t  (-00< t <0)

for AE6(M,S) , and, if AEG' (M,) generates the strongly continuous

group Z(t -00<t<O}

IIZ(t)ll < Me![ (-ot<CO)

In either case, the solution of equations (2.1), (2.2) (equations
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Theorem 2

.Z

If AE 6(1,O0) ,then A generates the strongly continuous
semigroup f S t't >O0 with s(t) def ired by

S(t)u = urs (t)u (Vu~X, -- <t<oo)n-*.o0 n

Additionally, this semigroup satisfies

and, hence, the solution to the Cauchy problem of equations (2.1),

(2.2) is again

U (t) = (t U0  (t>O)

for any u V-(A)

Letting S n(t) be defined as above, but for -co<t<-, one also

has the following (Belieni-Morante, 1979: 160):

Theore 2_&.

If AG'(1,o) V then A generates the strongly continuous
group f S ( t): o< t<-) with s(t) defined by

S(tOu =urn S (t)u (Vu~X, -- <t<-)
n-*C n

The group thus defined satisfies

* and the solution of equations (2.41), (2.5) is

U(t) =S(OU
0

* for any uKV-(A)
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it is straightforward to show that f * is a joint probability density

function (pdf) for each tC[O,T] with random variables x and p

Integration of f* over all peR yields a marginal probability e

sity function:

ff(xt) f*(xp.,t)d 3 p

R3

This marginal pdf is related to the number density, n (x,t), by

n(x,t) = Nf*(x,t)
- x-

*A conditional probability density functio is now needed to express

the macroscopic momentum vector, the macroscopic velocity vector, and

the pressure tensor in terms of the probability space. Specifically,

let the function fP x be defined by

f* i( x(p;Xt) f (x ,[ ,t)

x f*(xt) n(x,t)

Since fi is a pdf for every (x,t)ER 3 ×[OT] conditional

expected values of any function 6 (p) can be taken:

E"(p) :, : f.(p) f (p;x ,t) d 3 p

R 3

Conditional expected values of the functions p , v(p) , and

[p - P(xt)l]v(p) - V(x,t)] r

yield P(x,t), V(x,t) , and P(x,t), respectively.
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Expression of the basic definitions of plasma physics in a proba-

bility theory setting provides rigor and clarity for applied mathema-

ticians. On the other hand, the notation used by plasma physicists is

both intuitive and well-established. Consequently, now that the con-

nection between these two areas has been established, plasma physics

notation and definitions are used in the remainder of this disserta-

tion.

The rationalized MKS system of units is used in this chapter

since this seems to be the choice of many authors of charged particle

beam texts ((Lawson, 1977), for example). However, it should be noted

that most plasma physics authors prefer the cgs Gaussian system (for

example, see (Davidson, 19T4; Krall and Trivelpiece, 1973)). Both

systems have their advantges and disadvantages, and the transition

from one system to the other is not difficult. In the rationalized

MKS system, the symbols E 0 , 0 are used to represent the absolute

dielectric constant and magnetic permeability which are related by

2 1
Coo

0 0

Finally, since vector cross products are somewhat tedious to

write out in detail, the permutation symbol (Marion and Heald, 1980:

456), £ijk' as defined in Appendix B, and summation notation are fre-

quently used. By way of example, consider the cross product

W = uXv

The components of w can be expresed compactly as
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r

= ijkj k  (i=1,2,3)

For instance, if i= I , the above expression yields

3 3

W I E .lijk u 2 v 3 - u3v2

j=ik=l

since c 12= C i 13 2=-i , and E =0 for all other possible trip-

les (,j ,k).

Microscopic Descriptions

Vlasov Eauation. The distribution function of a nonneutral col-

lisionless plasma of a single species obeys the Vlasov equation

S( (Davidson, 1974: 12). If E(x,t) B(x,t) represent the total elec-

tric and magnetic field at time t, the Vlasov equation in Cartesian

coordinates can be written as

f T (xp t ) + V iyx.f (xpt)

+ q[Ei(x,t) + 6ikV Bk(X,t)] if(x,p,t) = 0 (3.6)

The fields E , B arise from external charges as well as from collec-

tive effect from the particles in the plasma itself. Denoting the

e e a s
external fields by B and the self fields by Ks , the total

fields can be expressed as
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e s

E =E + E

B =B e + B S

Maxwell's Equations. Maxwell's equations must be satisfied as

well as the Vlasov equation. The external fields are produced by

external charges or current densities, but since these will ultimately

be regarded as controls which can be applied in a prescribed manner,

their corresponding Maxwell equations are unimportant at present. On

the other hand, the self fields depend intimately upon the distribu-

tion function through Maxwell's equations:

S2
ES(x,t) = - 0c 2 J(x,t) + c 2  Bs ( tk  (3.7)

n - BS(xi -t) = - ik__kXt3 _(3.8)

3 ES(x, t) = x t)/ xt (3.9)

* - S

D BS(x,t) = 0 (3.10)* x7J -

for i=1, 2 , 3 . Recalling that a and J depend upon the distribu-

tion function f , it is seen that (3.6) through (3.10) represent a

system of nine coupled nonlinear integro-differential equations. Rep-

resenting the ordered set (f(x,R,t), ES (x,t), BS (x,t)) by

u(t) , equations (3.6) through (3.8) can be written as

d u(t) F(E e ,B e )(u(t)) (3.11)
dt

III-10
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where F depends upon the external fields and represents the nonlinear

operations indicated in those equations. Furthermore, equations

(3.9), (3.10) serve as restrictions on the domain of F , as would

boundary conditions which are typically present in any given physical

situation. A solution of the differential equation (3.11), and an

associated initial value, u(0) = u °  is generally difficult to

obtain.

Linearization of the Syste If the nonlinear operator is

approximated by a linear operator, the resulting system can be shown

to be an abstract Cauchy problem. This is now demonstrated for the

special case of both the the electric and magnetic external fields

being identically zero.

In infinite-dimensional systems, nonlinear operators can be

VO approximated in a manner analogous to the first-order Taylor series

technique in finite-dimensional systems. Consider the equation

"_(t) =gxt)

where g is a vector-valued nonlinear function: R:R n Rn . If xo is

known to be a solution of g(x ° )=0, and if

d 0 = 0

then x° is called an equilibrium solution. Suppose E can be

represented by a Taylor series at x 0

g(x) = g(x0 ) + X (x ° )(x-xO) +

111-I I
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Now, letting 5x(t)=x(t)-x 0  the original system can be approxi-

mated by the linearized perturbation equation

6x(t) J 0 6 x(t) (3.12)

where Jxo = a(xo). The operator Jx0 is the Frechet derivative of.
X ";

the nonlinear g at x provided each entry in J x 0 is continuous (see

examples 1 and 4 of (Luenberger, 1969: 171-174)). In light of the

comments in Chapter II following the discussion on Frechet deriva-

tives, the Gateaux derivative of g is also J x0.

In many situations it is not possible to show that an operator is

Frechet differentiable, although the Gateaux derivative can usually be

determined in a straightforward manner. Linearizations based on the

Gateaux derivative cannot be justified rigorously a priori, but such

models are often used. Solutions obtained for these models should be

verified, if possible, by alternate methods.

Let the operator 6F 0 :X-X , X a Banach space, represent the
U

Gateaux derivative of F:V(F) X at u0° and consider the equation

d u(t) = F(u(t)) (3.13)
dt

Suppose u0 is an equilibrim solution (defined in the same manner as

in the finite-dimensional case: F(u)=0) and let 6 u(t)=u(t)-u .

Provided the Gateaux derivative is a linear operator, the approxima-

ti on

111-12
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F(u°+Su(t)) F(u ° ) + 6F o(6u(t)) (3.14)

is made. This is a direct result of the definition, since if

6u(t)=hv(t) for any vEX, hER, the following limits exist:

lir F(u°+hv(t))-F(uo) = lir F(uO+6u(t))-F(u0 ) = 1rn I F o0u(t)
h-C0 h h-s C0 h h-0 h U

By definition of the limit, then, this implies

lira 111F(ur+nu(t))-F(u)-3F ou(ti = 0h-0 h u

Consequently, for h sufficiently small, the differential equation

d 6u(t) 6F 06u(t)
dtU

becomes the infinite-dimensional analogue of the finite-dimensional

result of equation (3.12).

With the approximation (3.14), the nonlinear Vlasov equation

(3.6) can be linearized in a straightforward manner. Let

e= e= 0 0E=B=O E, B0 be equilibrium solutions of equations (3.6)

through (3.10), and define 6f, 8_E , 6B in the obvious way. Then the

linear approximation to the Vlasov equation is

111-13
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L

ill~ f(x,p,t) + V.3 6 f (x,p,t)""

+ q(EOi(x) + 6ijkV Bk(x,t))3 6f(x,p,t)
P i  .

+ q(6Ei(x,p,t) + EijkVj Bk(X,t)3_f, (,p) = 0 (3.15) 1

Since Maxwell's equations are linear, simply replacing the functions

S S S S
(f, E , B ) with (6f , 6_E , 6B s ) in equations (3.7) through (3.10)

yields the linearized versions of these equations:

3 ES(xt) = -p qc2fvi5f(x,p,t)d p+cijk3 6BS(x,t) (3.16)

-- 
3x.R3

I

3 6BS(xt) = -F. 3 ES(xt) (3.17)3-{ - ijk ---D k -

5i

3__ ES(xt) = I f(x,p,t)d p (3.18)
jx.J -'3 i

S
3 SB (x,t)= 0 (3.19)3x. J -

J ..

i!

The system of equations (3.15), (3.16) and (3.17) represents an

abstract Cauchy problem

d w(t) = Aw(t) (t>O)
dt

with initial condition w(O) = w . The underlying Banach space
7
IT1= X. is yet to be specified. The domain of A should include

the restrictions of equations (3.18), (3.19), as well as any addi- .N

tional boundary conditions.

Further analysis of the microscopic equations requires realistic
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equilibrium solutions which are smooth enough for their derivatives in 7
equation (3.15) to exist. Such solutions are not known at this time,

although equilibrium solutions involving the Dirac delta function have

been discovered (e.g., see (Hammer and Rostoker, 1970: 1831-1834)).

Various attempts were made to continue analysis of microscopic models

using such equilibrium solutions, but the resulting linearized equa-

tions were intractable.

Macroscopic Descriptions

Equations can be developed from the Vlasov equation which

describe the evolution of certain "averaged" quantities. Such equa-

tions are termed macroscopic descriptions, and the first two sets of

these are presented below. These descriptions are appealing since the

unknown functions associated with them are more intuitive than the

distribution function in that the physical quantities involved are

more directly observable. However, certain phenomena, such as Landau 5

damping, cannot be predicted by such descriptions (Davidson, 1974:

11), and, consequently some information is forever lost once micro-

scopic descriptions are abandoned.

The macroscopic equations are derived by multiplying the Vlasov

equation by an appropriate function and integrating over all momentum

space. Details are not presented here since they can be found in var- 5

ious plasma physics texts (see, for example, (Chen, 1974: 211-213))

The first two sets of equations are commonly referred to as the con-

finity equation (3.20) and the momentum equations (3.21) (Krall and 8

Trivelpiece, 1973: 88; Davidson, 1974: 14):
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3 n(x,t) = - 3 [n(x,t)V (x,t)] (3.20) A
3t 3x.

1 ]

3 P. (x,t) + Vi(x,t) P. (x,t) + I 3 P(x,t)7 .
t 1 x. n(x,t) C3x.1 --

q[E(X, t) + CkV (xt)B (Xt)1 (3.21)

-~~ jkl k - -

where i = 1,2,3 , and LP(x,t). is the (i,j)-compnent of the

pressure tensor (see equation (3.5)).

Equations (3.20) and (3.21) cannot be solved without knowledge of

the pressure tensor, P . The components of P would appear as time

derivatives in the next higher moment equation, the energy equation,

but a quantity would be needed in this equation from the next higher

moment equation, and so forth. This chain of moment equations is fre-

quently broken here by making some approximation to P . If the spread

in the momentum is small at every point, then components of P are

small and, in the limiting case of the momentum being a deterministic

quantity everywhere, P = 0 (Davidson, 1974: 16). The spread in

velocity is also zero, in this case, and thus the temperature vanishes

everywhere. This idealized case is termed the cold lasm

approximation.

As mentioned previously, the macroscopic equations of (3.20) and

(3.21) are somewhat more intuitive than the Vlasov equation which they

replace. Integral operators are required in microscopic descriptions

(see equations (3.7), (3.9)), but are unnecessary in the macroscopic

descriptions. Furthermore, for the cold plasma approximation,
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although macroscopic descriptions replace a single unknown function

(the distribution function, f ) with four unknown functions (the num-

ber density and the three components of the macroscopic momentum vec-

tor) the reduction in the number of independent variables is three

(from (x,p,t) to(x,t)). For many applications, only these macro-

scopic functions are of interest. In light of these observations, it

is concluded that macroscopic models are preferred in the design of

particle beam control components, so long as they accurately describe

the number density and the macroscopic momentum.

A Sina D e 2L Freedom Linear Model

Introduction. Various additional assumptions are introduced in

JI this section in order to derive a suitable model for subsequent illus-

tration of semigroup theory techniques. A broad variation in operat-

ing conditions exists for charged particle beams. Each assumption

below has been invoked in plasma physics research in the investigation

of beam behavior under a specific operating condition (e.g., see

(Davidson, 1974)). Some assumptions, for example the nonrelativistic

velocity assumption, serve only to call out a specific regime of oper-

ation. Other assumptions, such as the assumption of the adequacy of

macroscopic descriptions, are made to simplify the model, with the

justification being that they have previously been invoked by plasma

physics researchers and have been found to be useful and adequate in

describing beam dynamic phenomena. In either case, the philosophy

taken now is that simple, though less accurate models whose dominant
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behavior can be expressed analytically, are superior in preliminary

control designs to more precise models which require computer gener-

ated numerical solutions.

The cold plasma assumption is in keeping with this philosophy. As

previously stated, this is equivalent to assuming that the momentum is

deterministic at every point. In practice, if the momentum spread at

every point is sufficiently small, then the cold plasma assumption is

reasonable. Otherwise, approximations of the pressure tensor might be

required (see (Krall and Trivelpiece, 1973: 89)).

I

The assumptions made in no way limit the applicability of
semigroup theory. For example, the same techniques used

below to analyze the single degree-of-freedom model could be
applied to a three degree-of-freedom model. See Appendix D

for the structure of such a model.

IA
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Reduction in the number of degrees of freedom is also useful in

simplifying the model. However, models which allow only a single spa-

tial degree of freedom in a Cartesian coordinate system are generally

unrealistic, so a cylindrical coordinate system is introduced.

Since most applications of a charged particle beam require only

that the beam operate near some design equilibrium solution, a linear

model about an equilibrium point should be adequate for control pur-

poses. Indeed, if the control function desired is that of regulation,

deviations from the equilibrium will be constrained to be small by the

action of the regulator. This notion is fundamental to control theory

design and has been applied with success routinely over the years.

Assumptions. The following assumptions are in effect in the

development below:

Al. the beam is in a vacuum

A2. all velocities are nonrelativistic

A3. the momentum spread at each point is small (cold plas-

ma)

A4. macroscopic descriptions are adequate

A5. the beam is uniform in the azimuthal direction

A6. the beam is uniform in the axial direction

A7. deviations from the equilibrium solution are small

Additional assumptions are needed later (page 111-24) for the develop-

ment of a specific equilibrium solution, and are stated at the outset

of that development.

Assumptions (Al) through (A4) result in the following system of
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at z°c )j× , 6Gz 0 can be computed as follows:

G(z 0 +hl) - G(z ° )lira
,C 0 h-0O

z -h

0

l + z + z -9I 5

+ 0 + zO 0 _ (z + zO )
+ z 1- Z 0 4 + z 4 z 8 5 + z 6 8

+ z (z 0  + z° )
3 85 5 8 9 4 4 9

q (3.66)
m

0

0

0

0

0

This expression represents the Gateaux derivative of G for a general

equilibrium z and associated external equilibrium fields, E'

e ,
B . For the rigid rotor equilibrium, the vector zo is given by
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0

Ee (r t) + Be (r,t) 3 - te(rt)
r z

E (r,t) + Ber(r,t)P 4 Bez r t) 2

G(Ee Be) (U)M= Ee(r t) + e(r,t)u - Be (r t)v

' z r ' (3.65)

0

0

0

0

0

Since the external fields E eBe are being viewed as the controls,

define the function space consisting of all physically attainable con-
6e

trols as g Y where E Y, E e.Y2  .. . B e CY6 Cons

quently, the mapping G(E e, Be) represents a unique nonlinear opera-

ee
tor f or every (E , ~Aor, alternatively, one can consider the

mapping G as one which takes elements from gx. into X . This lat-

ter interpretation allows an approximation of G by the Gateaux deriv-

ative in a manner analogous to the approxi~mation above for F

Consider an arbitrary element _in W<X , and suppose the X,

1 ,2. . .9 ,are all Banach spaces. The Gateaux derivative of G

111-32



~F o()
-u -

-no 0 b r 2

20 qV 0
2 -- - rr + -Il - r p

3 2c 2  4 5 m 8 m 9

2 In6

20v

p zq

- c2 n I( . 4

2 202

i qc 2 rrp - Ij q c 2n 0 ) c 2D r

-- q c 2Vo p - wi qc 2n 0p + c 2 b
0 Z 1 0 4 r 8

Dp
r 7

-D Ti

where Dr and Dr are defined by

r rr

I d

= (rf)
r r dr

Consider next the nonlinear operator G(E e B e
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". o . . . -- • ° . '. 4 t
d
. . o _ . . . ,' . - . . .bo --

Slim F(u 0 +hn) - F(u 0 )

*-u h-0 h

I d(ru + ud )n (I d(ru o)+ uOd
r dr 2 2dr r dr dr '2

d u0 + Od) + (2uO + mi U 00-T_
dr 2 2d-r r 3 M 93 M

_ qu0 + 2u

q 5 m 4 8 3 9

1 d 0 - o + uod) + q _ u
-( ru 0  + (-u 2 +u-2)2 3 6~- 2

3 ur dr 3 M r 2 m 29

(qu0  d od + q + o
m dr u4) 2 - U 2 dr 4 M 7 m 2l 8

2 + uO n (3. 63)
- 0 qc

2 (u21 1+ 2

- pj0 qc
2 (u 

0
1  + u 0 ) - c2d

0 3 1 1c'3 -d T

-q 2 (U rl 0 ) + r2 dr o

dj-r n 7

1 d
r dr

This expression is the Gateaux derivative for F for a general equi-

librium solution u For the rigid rotor equilibrium (equation

(3.60)),
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ments of u(t) in equations (3.41),(3.42), and (3.43) which involve

the external fields, and it is discussed in more detail presently. A

linear model which approximates this system is now developed.

Let u B continue to denote the rigid rotor equilibrium solu-

tion (equation (3.60)), and the z -component of the external, uniform

magnetic field, respectively. Define the perturbed variables 3 u (t)

in the usual way: Su(t) = u(t) - u ° . Similarly, let the per-

turbed external fields, CE e (r,t) , __ 
( r , t ) be given by

5_E e (r,t) r,t) _ (r) E e(r,t)

Bre(r,t)

SBe (rt) = Be (r,t) - Be, ' (r) = Be(r,t)

Be(r,t) - Bo

If all the spaces Xi, i = 1,2,.. .9, are Banach spaces, then the j
nonlinear operator F can be approximated by

F(u + 'u(t)) - F(u') + 6F 0 (u(t)) (3.62)

where : is the (linear) Gateaux derivative of F at u (see the

discussion associated with equation (3.14) in the section "Microscopic

Descriptions"). Calculation of SF U is straightforward:

.1

III- 2 9



LW' - r r- -rw --- ---

1973: 117). Finally, for 2 >2 2  two equilibria are possibleC p F .r1

(termed the slow mode/ fast mode (Davidson, 1974: 7)).

The complete solution for rs (0 ,R] is now summarized. LettingU' E'() V' (r) V' (r) V 0 (r) E' (r) F'°(r)

r z 1TI
E' (r (r) B, the rigid rotor equilibrium solution

is

0

0u° -c r

V

z
2 r

00
Linearization. Equations (3.410) through (3.116) and (3.148)

through (3.50) are seen to form a system of nine coupled nonlinear

differential equations and can be expressed as

dout = F(u(t)) + G(Ee, Be)(u(t)) (3.61) 1"
9 ,"

where FV()Y-X , : = IT X. ,and u(t) = [n(r t), Vr(r t),

V3 (r,t) , V (r ,t) , gE(r t) ,E 3 (r t) , E (r t) , B9 (r t) ,"'

B (r, t)] T The operator G (E e
, Be) represents operations on ele- [

:'z 
.

_z__

I
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The term qB0 /m , commonly called the evclotron freguencv (Lawson,

1977: 17), appears often in plasma physics and is denoted byw C The

term within the brackets is simplified by recalling that

C 2

and thus, this term reduces to

[- ( z)2

2mc 0 z

By the nonrelativistic assumption, (f0 )2 is neglected. The phrasez

plasma freauencv is given to the expression (Lawson, 1977: 119)

qj En' I'
ME0

and it is given the symbol p The following expression for v0 (r)Pe
p ~ emerges in light of the foregoing:

= - -[W) ] )

The use of the phrase "rigid rotor equilibrium" is justified by this

expression.

The expression within the radical in equation (3.59) provides a

minimum value for B0 . The external magnetic field is "sufficiently

large" (see assumption El above) if

W2 > 2(c2 > Bo > [2mn ]

Cf =2= £0

C P

If W C 2,,, , then the rotation rate is#2 and the phrase "fBril-

louin flow" is used to describe this situation (Krall and Trivelpiece,

111-27
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rrB s(r) r  0<r<R

0 0<r<
drsr (r) =

dr

r>R

The solutions of these equations are-

i-' 0 qn V

2 r 0<r<R

drESS 0 (r) =

I 0qn V°RR
z _ r> R -

2 r

0g qn O
2o

rS (r)
rq nR R
2 o  rr>R

2~~~ r oq(~)n

r ~ 0 rR
E2

E. .n 2 +r- r(r=)0

Ve (r) + - 0---~g m 92m r2  0

2c 0 r >

Solving this quadratic equation for Vr (r) yields

2= 2 no 2 0 q (V)0 2 nD
V (r + 2m r 2 - 4m 0  2m r (3.58)
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must satisfy).

The final assumption simplifies the solution considerably and is

realistic so long as the beam is nonrelativistic (Krall and Trivel-

piece, 1973: 117).

Assumptions (El) through (E5) are now applied to equations (3.40)

through (3.51). First, note that equations (3.40), (3.42), (3.43),

(3.44), (3.47), and (3.51) are all trivially satisfied. Letting the

superscript "0, denote an equilibrium solution function, the remaining

equations become

V (r)2  eo
+ r[E' (r)+V 0 (r)B e  (r)-V ° (r)B s ' (r)] = 0 (3.52)

rm r z z
r

F S, (r) = 0 (3.53)

Es (r) = 0 (3.54)z

11oqc 2 V' (r) + c2 d BS 0 (r) = 0 (3.55)
0 Z - Zdr

-I qc2 V (r) + c2 d (rBs' ° (r)) = 0 (3.56)0 z
r dr

S, 0
1 d (rE (r)) = _q_n (r) (3.57)
r dr

' Denote the constant external magnetic field, number density, and

z component of velocity by B n 0  and V0 respectively. The last

two equations become
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Nonrelativistic Rigid-Rotor Eauilibrium. Consider a beam in the

shape of a long cylinder of circular cross-section with radius R, the

axis of which coincides with the z axis of a cylindrical coordinate

system. Certain assumptions are required, in addition to those previ-

ously stated, for the rigid rotor equilibrium solution:

El. a (sufficiently large) uniform magnetic field in the z
direction is the only external field

E2. the number density is constant for 0<r<R, and van-
ishes on r>R

E3. the velocity in the z direction is constant for
0 =r<R

E4. the radial velocity is identically zero

E5. the z component of the self magnetic field is negligi-
ble compared to the external field

Some discussion of these additional assumptions is now in order.

The external field in assumption (El) is necessary to offset the

repulsive forces which would cause the beam to expand indefinitely.

The particles undergo a helical motion in the presence of this magnet-

ic field, resulting in a balance between the repulsive forces (elec-

trostatic and centrifugal), and the constrictive force (magnetic)

whenever the external magnetic field is sufficiently large. Other

means of confining a beam to a finite radius are possible (such as by

neutralization by background ions (Lawson, 1977: 258), for example).

Assumptions (E2), (E3), and (E4) represent a simple configuration

of the beam which may be useful in applications. Other combinations

of number density, axial and azimuthal velocities are possible, how-

ever (see (Davidson, 1974: 20, 21) for a general equation which these
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B =0 (3.47)
t r

S -- (3.48)
-z

SB s = -1 I rEs
-~ (3.119)at r r

1 3 rE s = i n (3.50)j
r 3 rr

1 3 rB s  = 0 (3.51)S

Note that equation (3.117) implies Bs dpnsol pntevleo

ss

andI that eqato (33) mlestatt51)mofB

rr r

rs(rrt (rt)s e

where K is an arbitrary constant. IfB (r t)is to remain bounded as

r-0, then K=0 and, thus,

B S(rt) = 0 (r>O, t>O)
r

Thus far assumptions (Al) through (A6) have been implemented.

Assumption (AT) requires development of a specific equilibrium solu-

tion. The "rigid-rotor" equilibrium (Davidson, 1974: 30; Krall and

Trivelpiece, 1973: 116, 117) is well known in plasma physics. A deri-

vation of this equilibrium solution for a nonrelativistic plasma is

now given. Use of this specific equilibrium is not required in gen-

eral, however, since any suitable equilibrium, analytically or numeri-

". . cally derived, is suitable for the linearization process.
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apply assumptions (A5) and (A6). For these reasons vector notation is

not used here.

Assumptions (A5) and (A6), uniformity in the 8 and z direc-

tions, respectively,are now invoked by neglecting terms in equations

(3.28) through (3.39) which involve 3 and 3 . This results in
30 3 z

the following nonlinear system of equations (the argument(r,t)has been

dropped for notatiorl convenience):

n = -I 3 (nVr) (3.40)
3t r 3r

V -v v r + + q[E'+V BSVB]--,7 r -- r m r z
d r r

+ -a[Ee+V9 Be-V Bem z (3.41)

i3V = -VrD V - r + r
3t r3r r

+ q[Ee+V Be-V Be] (3.42)
m 9 zr rz

3V =-V V + -a[E S+V SVB S1
-z r~- Z m zrA -9 r

+ -aEC+V Be -V2 Be](.3
M z r 9 r-(.3

S = - q c nV (3.44)r r

S i

* = -L~qcnV? - cn BV (3.45)

t

3E Es -Uqc-nV + c (rB,) (3.46)
z r- rt 11r r
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V3V =-V 3V _ 3V -V V
- z zr-z - z z

at 3rz r

+m z rB6-V 0 Br] + mI[Ee+V rBev B e ]  (3.31)

3Es = qc2V + c(2 - (332)
- r =  r r 3z ] .

cS 2 0 S1B

_-J 0 q cV + c[ - B ] (3.33)S 6 z r z

E s q - c 2 %T + C2 r - Bs (334
5 0 r r  r -[r(

Bs = 3 Es - I 3 Es  (3.35)r z
3t Z r 3

3 B = 3 E s - 3 ES (3.36)

3 B = 1 3 ES - I 3 rE s  (3.37)
-- - + r E

r rr 6 r

"" rEs + i 3 Es + 5E s = ___n (3-38)r --i r j r r Dtj - z C9

1 r3 rBS + I + Bs+ B 0 (3.39)
r 3r r r 0  z

A far more compact statement of these equations is usually given in

plasma physics texts by the use of vector notation (see (Krall and

Trivelpiece, 1973: 85, 86; Davidson, 1974: 14, 15; Shkarofsy et al,

1963: 12, 21; Montgomery and Tidman, 1964: 12)). These compact forms,

however, can be confusing to those not familiar with the notation.

Furthermore, the detailed expressions above are needed in order to
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orthogonal system which has been rotated about the z- axis by the

angle 3:

cos3 sin 90

~r
T•= -sin 9 Cos 0

x

0 01

SLetting ['i , ,vvv]T [EET]

Lt i 3 represent V 2 3 I [E E E or3 2 2 1 3 o

LB B, B then, the new functions jr' z are defined by

r9Lc] = T r L2
Using these definitions, equations (3.22) through (3.27) can be

~S
expressed in terms of the new unknown functions n , Vr V , E r

Elp Ez P B ,Bz , with independent variables (r,9 ,z,t) (the argu-

ment (r,t) is dropped for notational convenience):

Sn = -iVr)-3 nV r- 1 9 nV, -' nV (3.28)
t r r r 89 z z

V 2

S-V V - v v + v9 V V
r r~r r rr o0 r Z3z

S~v SS, s + e s _( .9

+B jE +V B-Y B. + qLEe+V B -V Bs (3.29)
r z z r z z

m m

V_ _ V rS V 9
- , V. : - r,__'- 3 V - S zTr V 0V

r 3S r uz

.21 ES+V BS-v B s  + I g+v Be V Be]z' r r z- " Z"z r- r z
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0

0

z0

00

0

B0
0

U

with u explicitly defined in equation (3.60). The operator

reduces considerably, in this case, as follows:

0 0

- S 9

4Vz -B

+ Z0

.*; ( ) 0 + r + .2 0 (.7

* -~ m to(3.67)

0 0

0 0

0 0

0 0

I 0

The nonlinear £_. can be approximated, then, by
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G(EeGBe,u(t)) G(Ee ' ° Be, ° uo ) + 6G (Ee 3 Be,6u(t))-- z 0 _ -tz (3.68)

Using the approximations of equations (3.62), (3.68) in equation

(3.61) yields

a u(t) = (U + ,U(t) ) _F(u') + G(Ee,o B e,O UO)
dt - _t

+ SF _( u(t)) + G 0 (,Ee 6Be,3u(t))

This implies, then, that

d -u(t) 6F o ( 6 u(t)) + 6G _ 0 (8Ee 6Be,5u(t)) (3.69)
dt--u -z -

This equation represents a linear approximation to the nonlinear sys-

tem of equations (3.40) through (3.46) and (3.48) through (3.50). A

similar model can be developed for the region r>R . In general,

these two models must be solved simultaneously, and their solutions

must satisfy further mathematical constraints at r=R . Consequently,

only small excursions of the actual beam radius from the equilibrium

solution radius are allowed before a relinearization must be per-

formed.

Linear. Mode. To summarize the development thus far, the

expressions derived in equations (3.64) and (3.67), based on the rigid

rotor assumptions, are substituted into equation (3.69) to yield
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0J
-n D 6u (t)
.- r 2 

20O

1-2w6u 3 (t) _ (t) + ,16u (t)
2c 2  um 4

qVz _

- 6u (t) -q-ru(
m 8 m (

2w6u9 (t) + 6u (t)

m
-- 2-

o

2 --- rru 2 (t) + m u7 (t)
d
d ,3u(t)

-]_0 q c 2 no u2 ( t)
20

poqc 2 wr6u,(t) - oqC2 n°u 3 (t) - C2D6u,(t)

-P qc 2 V°5u (t) - 2i qcnu (t) + c u (t)'o z 0 4 r

D 5u (t)
r 7

-D 6u (t)
r 6

0 0

B 3 e (t) 6Ee(r t) - or6Be(r,t) - V,6Be(t)
3 r ) Zz

-B0 u,(t) 6E e(r,t) + V6Be(r,t)z r

0 6Ee(r,t) + wor6Be(r,t)
z r

+~ 0 + 0 (3. 70)
m m

0 0

0 0

0 0

0 0
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A

ihi:3 cqv~tic'i. ~' a x~ c~c'J.. o2 t2~r fc:r

L

) Av(r) + (3.71)

e
I'

r -
U -nIl 0 0 0 0 0 0 0

I.

(T

(I U --2< -~ -~U I -- ~-- r
2 C I.

I

U 0 0 (1 C{ (I 0 0
I:

V 7
U F V 0 (1 0 e U U

U 0 U U (I

I

(~ (*
I)

V -

K 1 V I V (I

H

I
I



and

0

Ee - ~~(r,t) WIBe(r,t) -V~ert
r z 3,B

e e

6E e(r t) + wr2:B e(rt)
z r

0

0

4 0

0

(H) An appropiate initial condition for this system of equations is5

0any "fsmall" perturbation from the equilibrium solution u *Let u

be any initial condition for the system of equations (3.61) such that

U- ' < d

where d is a sufficiently small positive constant. The corresponding

4initial condition for equation (.1,for any such u ,then, is

giv en by

w = U -UO
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The Electrostatic Approximation Model

An additional assumption simplifies the single degree of freedom

model considerably:

A8. perturbed self magnetic field effects are negligible

This assumption is occasionally invoked in the study of plasmas and is

referred to as the "electrostatic approximation" (Davidson, 1974: 42).

The linear model implied by assumptions (Al) through (A7) and the

electrostatic approximation, assumption (A8), is now developed.

Assumption (A8) eliminates the equations for w8 (t) and w9 (t)

(see equation (3.71)) immediately since these represent (approxima-

tions to) the time derivatives of IS(r,t) and 5BS (r,t), respec-
z

qm tively. Furthermore, the equations for w 6 (t) and w7 (t) are elimi-

nated in the electrostatic approximation. This is justified as fol-

lows. Consider equation (3.28) for the perturbed electric field

6Ee(x,t)

likS(x.t) -- 'B (x t) = 0 (i 1,2,3)-ijk x ' "- k _, ....

Since the curl of the perturbed field vanishes, it must be expressible

as the gradient of a scalar field (Marion, 1965: 105-108):

E(Xt) (x,t) (i = 1,2,3)

Expression of this result in the cylindrical coordinate system and
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Assumptions E' through E5 and Al through A8 have been introduced

in order to develop a sufficiently simple linear model for a demon-

stration of semigroup theory techniques. These techniques are not

dependent upon the numerous assumptions invoked above. The rigid

rotor equilibrium is merely one of many equilibrium solutions; in

fact, numerically generated equilibria can be developed for a differ-

ent set of assumptions than El through E5. The fundamental problems

to be addressed in any infinite-dimensional system remain the same,

however. One imust demonstrate that the model, with appropriately

chosen function spaces, is well posed. This is equivalent to showing

the operator A in the abstract Cauchy problem (equations (2.1),

(2.2)) is in one of the C-classes described in Chapter II. In Chap-

ter IV, the electrostatic approximation model is used to illustrate

the theory. Specifically, appropriate spaces are chosen and an ana-

l lytic solution is obtained. In more complicated models, numerical

methods will generally be required a~d determination of appropriate

spaces will undoubtedly be more difficult, but the basic principles

remain the same.

Conclusion

Models of the dynamic behavior of a charged particle beam have

been developed which vary widely in complexity. The most accurate

models consist of the microscopic descriptions and involve six inde-

pendent space-like variables. Macroscopic descriptions are less com-

plex and involve at most three independent spatial variables, but
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require additional assumptions. Linearizations of both types of

descriptions yield models with the abstract Cauchy problem structure.

A single degree of freedom linear perturbation model has been

developed based on a physically reasonable equilibrium solution. This

model is novel in that it incorporates the effects of the external

fields as controls, and it is expressed as an abstract Cauchy problem.

As a result, a new particle beam model is now available to researchers

in the control community in a form which is directly useful for fur-

ther analysis.

The final result of this chapter has been the development of a

particularly simple model which has a closed-form solution. It is

valid whenever the perturbed self magnetic field effects are negligi-

ble, and this is the situation so long as all perturbed velocity com-

ponents are sufficiently small. A solution of this model is developed

in the following chapter.
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IV. Analysis of the Electrostatic Approximation Model j
Introduction -i:

An analysis of the differential equations in the electrostatic

approximation model is now presented. At the outset, conventional

methods of classifying systems of partial differential equations are

discussed. The system of equations (3.72) does not fall into any of

these conventiorl classifications, at least by most authors' defini-

tions. In fact, no treatment of systems with this particular struc-

I) ture could be found, by this author, in control theory literature.

Consequently, fundamental concepts must be applied to the problem at 1

hand.

To this end, a simple example of a system which is similar to

that of equation (3.72) is introduced. This trivial example provides

insight as to how one might choose an appropriate underlying Banach

space for these types of systems.

Both physical considerations and insight from this example are

then used in selecting a Banach space for the electrostatic approxima-
-4

tion model. The matrix of operators in equation (3.72) is shown to be

the generator of a strongly continuous group on this space. The asso-

ciated semigroup of operators is then constructed, and a closed-form

solution of the homogeneous abstract Cauchy problem associated with

91
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equation (3.72) is given. The nonhomogeneous solution follows immedi-

ately, in light of Theorem 2.12, for a broad class of inputs.

Conventional System Classifications

Consider the following system of partial differential equations:

39
t -u(xt) = A(x,t)Txu(x,t) + b(u;x,t) (4.1)

The unknown vector-valued function u assumes values in Rn I A is an
th

n -order matrix-valued function of(x,t), and b is a (possibly non-

linear) function of u as well as (x, t). Systems of equations with

this structure are sometimes classified as hyperbolic, parabolic or

elliptic.

Equation (4.1) is called hyperbolic at the point (x,t) if

(1) all roots of the polynomial P(0;x,t), defined by

P(X;x,t) = det[XI - A(x,t)]

are real and (2) if there exists a full set of linearly independent

eigenvectors (Courant and Hilbert, 1962: 425; Garabedian, 1964: 96).

Some authors prefer to define system (4.1) as hyperbolic only if the

polynomial P (X ;x, t) has n distinct roots, while others refer to

such a system as "strictly hyperbolic" or "hyperbolic in the narrow
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sense" (Zachmonoglou and Thoe, 1976: 362). With this minor exception,

there is good agreement among authors of partial differential equa-

tions texts on the definition of hyperbolic systems. If the matrix

A (x, t) is symmetric, then it is well known that a full set of lin-

early independent eigenvectors exists. Consequently, various treat-

ments of equation (4.1) have been undertaken under this simplifying

assumption (Russell, 1978: 647; Fattorini, 1983: 146).

There is far less agreement on the definition of a parabolic

system, however. Hellwig (1964: 70) defines system (4.1) to be par-

abolic if the polynomial P (X ;x, t) has precisely V distinct real

roots, where 1<,)<n-1 . Few authors allcw such a broad definition,

however. Various restrictions are usually imposed on equations with

the structure of (4.1) in order to preserve some of the properties of

scalar parabolic equations (e.g., the heat equation) (Eidel'man, 1969:

3). As a result of various authors' viewpoints, we have systems of

equations which are defined as "parabolic in the sense of Petrovskiy,f"

"parabolic in the sense of Shi-lov," or "parabolic in the sense of

Shirota" (Eidel'man, 1969: 444-453). No universally accepted defini-

tion of a parabolic system of partial differential equations has yet

emerged.

While there is general agreement on the definition of an elliptic

syste, many texts on partial differential equations omit any dis-

cussion of such systems. Both Hellwig (1964: 70) and Zachmanoglou and

Thoe (1976: 362) define the system (4.1) to be elliptic at the point

(x,t) if the polynomial P(N;xt) has no real eigenvalues. Ellip-

tic systems do not often arise in initial value problems (Courant and
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and,

-- ~ SEe (x, t)0 0 0 0 0 0 r

e (x t)

1 0 0 0 -V -Wx
Z

OEe(x t)
Z

( ,t 0 1 0 0 0
Z

B e (x t)
r

0 01 x 0 0 S e (X, t)

0 0 0 0 0 0 e x t

zB

Z

Consequently, the polynomial P(i ;x,t) is independent of (x,t)

and is given by

P(N,t) = det(NI - A) =

It is easily verified that there are only four linearly independent

eigenvectors associated with the eigenvalue N = 0. Hence, this sys-

tem is neither hyperbolic nor elliptic. Furthermore, it is not para-

bolic under any of the definitions mentioned above except for Hell-

wig's. Unfortunately, in contrast to the hyperbolic case, no exten-

sive treatments of systems of this type have been found in control

literature, so equation (4.2) will be analyzed from fundamental con-

cepts. To this end, a simple example of such a parabolic system is

useful.
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- ." An Illustrative Example

Consider the two coupled partial differential equations

u (x,t) = -(4.3)

- u 2 (x,t) = 0 (4.4)

with initial data

u (x,0) u(x) (4.5)

u (x, O ) =u(x) (4.6)

. for 0<x<l, t>0. Equations (4.3), (4.4) have the structure

* " of equation (4.1) with b(u;x,t) = 0, and

A(x,t) = A =

i0

Note that A has the single eigenvalue X = 0, and there is

but on linearly independent eigenvector associated with this

eigenvalue. The following two propositions are now proven:

Proposition 1: The abstract Cauchy problem of

equations (4.3) - (4.6) is not
well posed for X,= X 2 = L 2 (0,1).

Proposition 2: The abstract Cauchy problem of

equations (4.3) - (4.6) is well
posed for X 1  = L

2 (0,1),
X = H' (0,1).
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Proof of Proposition 1

Analysis of the operator

0 _d

dx

reveals that, for z # 0,

z z 2 dx

(zI - A)- g = K
b0

z

Now (zI A) - ' is not in the set B(X) for any value of z

since, for the specific choice

'J". 0

(x =[ ]

one has that

_ x _
2z2

(zl - A) "'(x) =

x 2

z
2' -Z) ' V M

However, x -  X = L 2 (0,1), and so (zI - A) 1 gB(X).

Consequently, the spectrum of A is the entire complex
plane and, thus, A V G(M,S) for any pair (M, ) (recall
Definition 2.3, page II-10). By Theorem 2.2, then, the

abstract Cauchy oroblem (4.3) - (4.6) is not well posed.
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Solution of the Electrostatic ADDroximation Model

The electrostatic approximation model developed in Chapter III

(see equation (3.72)) is a nonhomogeneous abstract Cauchy problem:

d
dtw(t) = Aw(t) + g(t) (4.7)

w(O) = wO (4.8)

where

0 -nD 0 0 0
x

0 0 a2 3  a24x a.5

A = -a 23 0 0 0

o -a 2 4 x 0 0 0

o a,2  0 0 0

The symbols a.. represent constants in the matrix of operators in
equation (3.72), and the operator D is defined on page 111-31. The

x

mapping w takes values from the nonegative real line into a function

5
space = T X. -i.e.,

1=1
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1  

X .!

Sn(x,t)

6V r(X,t)

W(t) = 6ve (x,t) (t>o)

6V (X,t)

5SE (X,t)
r

Analysis of the illustrative example above, equations (4.3) - (4.6),

suggests that the choice of X has a profound effect on the well-

posedness of such systems. Specification of the Xi is now made based

- upon both the physics of the problem and mathematical insight obtained

from the example.

If n (r, t) denotes the number density in a cylindrical beam of

radius R with axial and azimuthal symmetry, then the total number of

particles in a unit length of the beam at time t, N(t) , is given by

N(t) = 27f n(rt)rdr

0

The number density can be expressed as an equilibrium value, n o (r)

plus a perturbed number density 6n(r,t) , and thus,

SR

N(t) - 27T no(r)rdr + 2Tr 6n(rt)rdr

0 0

IV-10



One natural choice for the norm of the perturbation 6n(r,t), then,

is the L' (0,R) norm of r6n(r,t):

R

llr6n(r't)IL (OR) = f n(rt)rIdr

0

Define M1 (0 ,R) to be the space consisting of all functions g for

which

1 g (x) 11 ,11 (OR) g jx(X) 11jL1 (0,R)

In Appendix C it is proven that M1 (0, R) is a Banach space. The

space Xiis now defined to be M1 (O,R).

The Sobolev space H' (0,R) is selected for the spaces X2

through X5 . Unlike the choice for X, , this selection is motivated

more by the results of the example in the last section than by physi-

cal considerations.

Since the spaces X1 through X5 chosen above are all Banach

5

spaces, the Cartesian product X H Xi becomes a Banach space.
i=1

For convenience, define the norm of the space M by

0 = max {

With this choice for X, the linear operator A in the electrostatic
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approximation model can be shown to be a bounded operator.

/Lemma

5
Let X. with = M (O,R), X2 = = X 4 = X

i= 1
= H1 (O,R) , and define the operator A: X-* by

0 -n-D 0 0 0X

0 0 a 2 3  a 2 4 x a2,

Af= 0 -a, 0 0 0

0 - X 0 0 0

2
o a S2 00 0

If R<- then AEB()

Proof

In order to show that AcB(,X) , it is sufficient to sho7w

that

IIAf 11 < Kjjf II

for some K > 0 (see page 11-3). Denoting Af by g, ine-
qualities for _1.111i are derived as follows:
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Consequently,

11g1 11 < C 1 2 f

llgz 11
2

2 a 2 = fa f + a x 4 + a f51
X
2

By the triangle inequality, then, and
since 12 X3 =4 S

< ajl~3l + a+Ia
2 2~lxfl

The middle term on the right hand side
obeys the following inequalities:

fR

xf 4  f Jx 2 f 4 (x) 2 + [D x(xf 4 (x))] 2 (dx

< x2f(x)2 + 2[f4(x)2 + (xf 4(x))
2 ]dx

0 2

i f(X2+2)[f(x)2 + f4x) 2]dx

(R
< 2(R2+2) f (x) 2 + f'(x) 2 dx

0II II2
2

2(R +2) If III

and so

IXf i < [2(R 2  ' 2)12
4 44
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As a result,

a f + a 2(

g, 1 1 f3 X3l x-

=c,.ll IIx + chlfhlI + C2 flk II5

= V lI 3  2 3 32 f X I 2

It lI

p = hJ-a, xf21 < a24 2 -( R -Y~2+ I 22 C~2~ 2~

(The argument is identical to that for
the 1V+xf1 term above.)

2 2

Ila~~ .

IIa a I II 1 I1 52I lK.
g ~~~~~~ ~ ~~ C 

= -5 x2X a4/(22 f 2 X,4 f X
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From these inequalities, it can be seen that the norm of Af
satisfies the following:

IIl f max {lI }
= 1 ... 5 +1 ill f  l

< max CI 2 lf ll C2 3 lV 3IlX + C A + C I2 5 lf 5 1X

C3 [[~fallx , C llf~llx sal l
C32 2 2 C4 2f2X2 C 2f2X2

max <KIIf lxi=l, . .5 Cij IlfjII ILL

The constant K is given by ~

K maxI

and the C i. are either defined as above or are zero if not
previously efined. Since A is linear and IIAfIlx.<Kllflx,
A c B(X) *

Proof of the following theorem is immediate in light of this

lenma and Theorems 2.2 and 2.6:

Theorem 41 -

If the linear operator A and the Banach space X are
defined as above, then the homogeneous abstract Cauchy prob- ".
lem associated with equation (4.7) J

d
-w(t) = Aw(t) (t>O)
dt- -

w(O) w"

IV-16
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is well posed.

Also from Theorem 2.6, the solution of the homogeneous problem is

simply

w(t) = S(t)wo

where S(t) is the strongly continuous group generated by A:

n

lir tJAj

S(t) - = 0

j=O

A closed-form expression for S (t) is now developed.

Computation of S (t) involves the development of genera. terms in

the infinite series indicated above. The work is simplified by the

use of a partitioned matrix expression for A

-nD 0 0 0X

0 0 a, a' X a2 0 F 0

= C -a 0 0 0 = 0 0 G

C - x 0 0 0 0 H 0

. 0 0 0

Writing out the first few terms of A one obtains
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noisy environment.

Parameter estimation should also be pursued since some quantities

in the model are not likely to be known with great certainty (e.g, ]
and ). In fact, the relatively new method known as mul-

tiple model adaptive control (Maybeck, 1982: 253) could prove useful

as well.

Full Linear Macroscopic Model. An examination of the linear

macroscopic model of equations (3.66) and (3.67) reveals that, like

the electrostatic approximation model, this system of nine partial

differential equations is classified as a parabolic system under Hell-

wig's definition. Writing equation (3.66) in the form of equation

(4.1), one has

0 -n 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0 0I

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2c

0 0 0 0 0 0 0 c 0I

o 0 0 0 0 0 1 0 0

0 0 0 0 0 -1 0 0 0

and, thus,

- A' = , (' - c )

It is easily verified that only four linearly independent eigenvectors

v-4



number density, velocity field, and radial electric field, under the

assumptions required for the electrostatic approximation model. It is

not yet clear whether an arbitrary state can be attained through the

action of allowable controls. In the language of control theory, one

would like to establish whether the electrostatic approximation model

is controllable, approximately controllable (Russell, 1978: 643), or

neither.

A second control problem is that of synthesizing a regulator to

maintain the equilibrium solution when the model is subjected to

unknown (or unmodelled) inputs. Generating a stable configuration for

a plasma in the laboratory is frequently difficult. A regulator based

on the electrostatic approximation model might improve the situation

considerably.

Eventually a controller which would enable changing the state of

the beam to a new equilibrium might be sought. Adaptive control would

be necessary if the new equilibrium were to be far from the original

equilibrium.

Observability Problem. A means of detecting the state of the

system is required in order to design a controller. Analytical stud-

ies of various sensor configurations can now be performed with the aid

of the electrostatic approximation model and its solution.

Deterministic studies are recommended first, to determine general

sensor characteristics required in order for the system to be observ-

able or distinguishable (Russell, 1978: 645). Once some general

requirements of sensors are determined, stochastic analyses should be

performed to determine how well one can estimate the beam state in a

V-3



(see (Courant and Hilbert, 1962:172,173)). These models do not fit

into most classification schemes for systems of first-order partial

differential equations: however, they appear to be physically signif-

. In fact, the electrostatic approximation model has a nonstand-

ard structure, yet a unique solution to this system does exist as is

shown in Chapter IV. Perhaps this result indicates a need for a bet-

ter classification system than presently exists. (Semigroup theory,

as applied to the abstract Cauchy problem, may provide insight in this

direction.)

Contributions to the field of plasma physics consist of (1) a

solution of the electrostatic approximation model (Chapter IV), and,

(2) an introduction to (and a demonstration of) the application of

semigroup theory to collisionless plasma dynamics problems. The solu-

qe tion of the electrostatic approximation model is a closed-form solu-

tion and has not appeared, evidently, previously in the literature.

It describes the electromechanical oscillations of a very simple beam

dynamics model. Under certain approximating conditions, the beam is

shown to oscillate at the plasma frequency as one might expect. The

full potential of the techniques employed herein has only begun to be

realized in this area of plasma physics.

Sugested Areas for Further Research

Control Problem. Equation (4.10) provides an explicit means of

predicting the effects of external electric and magnetic fields on the
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_LV Summary and Suggested Areas fQr Further Raexsli

.I

Summary 2f Research Results
I

Significant contributions have been made in this research effort

to three distinct fields: (1) control theory, (2) applied mathematics,

and (3) plasma physics. These contributions are now briefly dis-

cussed.

The single most significant accomplishment in this research is

the laying of a foundation for application of modern control theory

techniques to the beam dynamics problem. This foundation consists of

three separate blocks. First, a concise description of relevant semi-

group theory results is given. Secondly, a full spectrum of beam

dynamics models is developed. Finally, a specific model has been

exploited which fully illustrates semigroup theory techniques. The
I

closed-form solution of this model, with external controls included,

is in itself significant, but more importantly, the solution process
.4

used serves as a pattern for future control theory research efforts.

Two aspects of this research are of interest to applied

mathematicians. Development of semigroup theory into a useful tool

requires more documented accounts of actual applications: this report

represents one additional such account. Another significant result of

interest to applied mathematicians is the form of some of the systems

of PDE in Chapter III. The structure of some of the models therein is

neither totally hyperbolic nor hyperbolic in the more general sense

V-1
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number density, velocity field, and radial electric field evolve in

time from an arbitrary initial condition, but it predicts their evolu-

tion in the presence of external fields as well. In a broader con-

text, by using solution techniques that involve elements of the semi-

group theory of operators, this powerful and elegant theory is now

more accessible to both plasma physicists and control theory research-

er s.

Wi7

L

t-.
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definition, but no extensive techniques for solving such systems exist

in the literature. By an application of semigroup theory, and by a

careful selection of the underlying Banach space, however, this model

was transformed into a well-posed abstract Cauchy problem and a

closed-form solution was derived.

One significant conclusion that can be drawn from these develop-

ments is that systems of linear partial differential equations can be

successfully analyzed by semigroup theory techniques regardless of

their conventional classification. Various researchers in this field

have recognized this fact. For example, Pazy (1983; 105, 110) classi-

fies equations of the form

d-- w(t) = Aw(t) (t >_ 0)

as either hyperbolic or parabolic depending upon whether A generates

a strongly continuous semigroup or an analytic semigroup (defined in

(Pazy, 1983: 60)), respectively. Also, Fattorini (1983; 173) classi-

fies equations with this structure as abstract parabolic if every gen-

eralized solution of the system is continuously differentiable, and he

relates this to the analytic nature of the semigroup. The electro-

static approximation model provides a concrete example of the need for

a classification scheme which is based on the properties of the opera-

tor A in relation to the underlying Banach space X 71
Several contributions to both plasma physics and control theory A

have been made in this chapter. In the narrower sense, development of

a closed-form solution of the electrostatic approximation model is

significant in itself. This solution not only describes how the

IV-26



brackets is essentially unity and the variation of £q with x can be

ignored. Supposing this to be the situation for now,

I 1-2
C p

In Brillouin flow conditions (see the subsection "Nonrelativistic

Rigid-Rotor Equilibrium" in Chapter III), 032 = 2w 2 and

Q [2w2  w2 =W

p p

This represents a limiting situation since the rigid rotor equilibrium

can exist only if W2 > 2w 2 -, i.e. £2 > wc p P

On the other hand, if for some combination of x , V0  and w 2
zp

does vary substantially with the spatial location, it can still be

interpreted as a frequency, but a different frequency of oscillation

would exist at each point within the beam.

Conclusion

Conventional methor's of classifying systems of partial differen-

tial equations were discussed early in this chapter. The electro-

static approximation model was shown to be parabolic under Hellwig's

IV-25
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00

with iniial ondtio , provided the corresponding components of

w0 also satisfy Poisson's equation:

D w o  = R --w o I
0

Consequently, the initial condition vector w0 is constrained by phys-

ical condiderations to lie in the subspace Q defined by

9 = {wE. :D w° = a w °}
- x 5  £o 1

_he Freguency P. In the expression for the semigroup S (t) ,

equation (4.9), the symbol Q is seen to appear frequently. The phys-

ical significance of P is now discussed.

In the derivation of S(t), the symbol 2 was defined as

- 2) + p z  x2 + W 2C2C 2  p

Using the definition of w0 and some algebra one has

For any reasonable combination of x, V and w the factor in

V1-24
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For some applications, the requirement for g(t) to be continuously

differentiable is too strict. Meaning can be given to the expression

on the right hand side of equation (4.10) for a much broader class of

inputs. For example, even if & is in the set L1 (0,T) , this expres-

sion is termed a "weak" or "mild" solution (Pazy, 1983: 108; Fattor-

ini, 1983: 89).

Comments on the Solution

Two additional topics concerning the solution, the effect of

Poisson's equation on the initial conditions, and the physical signif-

icance of the frequency Q , are now discussed.

Initial Conditions. Although the solution, equation (4.10), is

correct for any initial condition vector w0 in X , there is a physi-

0cal restriction on w . Poisson's equation (see equation (3.50))

5 S~xt = _-n(x, t)
x r Lo

has been used in the rigid rotor equilibrium derivation of n' (x) and

E, (X) , but the perturbed quantities wi (t) = 6n(x,t), and w5 (t)

= SE s (x,t) must satisfy Poisson's equation as well:
r

( Dw t) = (t)

It is easily verified that components w1 (t) and w0 (t) obey Pois-

son's equation, if w(t) is the solution of the homogeneous equation

IV-23
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Similar results follow for the remainder of the elements of

S (t). The complete expression for the strongly continuous group is

shown in the figure on the following page. The notation ,(-)" in the

top row is used to indicate that D operates on the product of each
X

initial condition component with the expression within the brackets.

For example, the (1,2) element of S(t)would operate on w as fol-

lows:

0 (sin2t o[S(t)]1 2 w (x) -nD [ w 2 x)

The solution of the homogeneous problem is now complete.

The Nonhomogeneous Solution. Recall from equation (3.72) that

1 0 0 0 -V °  -W e Xxt)

Ee(x t)
g(t) = 0 1 0 V0  0 0 Z

z 6e (x t)00 0 x

o a a a B~e (x, t)

0 1 0 0 0 0

0Be(x t)
e

By Theorem 2.12, if the external fields are such that g(t) is contin-

uously differentiable for all tK[OT], then the nonhomogeneous equa-

tion (4.7) has the solution

UR

w(t) = S(t)w ° + S(t-s)R(s)ds (0<t<T) (4.10)

0

* F
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Z 7

k-i k
0 0 FG (HG) 0 F(GH) 0

(2k 2k+l0 (GH)=l+ t k+ 2k+l) k
0 (GH(2k) t~ (k) 0 0 G (-.G)k

k= I k k=0 ko 0 (HG) 0 H(GH) 0

The (1,2) element of S(t) can be summed as follows:

"2 S 2k+ 1

[S(t) 1 2 = ( 2k+1 k

k=O

O

S 2k+1)7 t -(_nO )[- 2-(a X)2 +a a ]k

( 2 k+l) ! X a3 -a24 25 52

k=0

* .r An examination of GH reveals that GH<O

GH = -a 3 -2 ax) + a a

2 3 a24 2 5 2 p

j= - (W C 2w) 2 - X - W 2

Letting 2= -GH then, one has

k k 2K

(GB) (-) 2

k
With this form for (GH)

02

= -nSD M (i)2k t2k+1 2k+l

[S(t)]12 x (2k+l)!

k=o

= sin~t
=-n D XE1x £1

IV- 19

6 . . .. . : . .-. ... : % .. ., .



70 F 0 0 0 0G

St=+t 0 G HG +- 0G) 0 0

t2

t L O H(GH 0 l LG0G

F(GH) 0 0 0 FGHG)

+ 0 0 G(HG + 0. (GH )2 0

L 0 H(GH) 0 L 0 (HG) 3J

0 F(GH) 2  0 0 0 FG(HG ) 2

+ Li 0 0 G(HG)' + 6- 0 (GH)' 0 +..

LO H(GH ) 2  0 L 0 0 (HG)'

(Note that since F is an operator, and G, H are matrices, the order
I

of these factors in the expressions is crucial.) A general term of

this expansion can be seen to be

j-1

0 F(GH) 2 0

-i
0 0 G(HG) 2j= 1,3,5...

ij2

0 H(GH) 2 0

i--
0 0 FG (HG) 2

I
(GH) 2  0 j = 2,4,6,...

J.J

0 0 (HG) 2

After some manipulation, then, S (t) can be expressed as

IV-18



are associated with the eigenvalue X=O . The space X must be

chosen with this in mind if the model of equations (3.66) and (3.67)

is to be a well posed abstract Cauchy problem. A solution of this

model would be beneficial since, unlike the electrostatic approxima-

tion model, electromagnetic effects are included. By comparing the

solutions of the two models, then, an assessment of the shortcomings

of the electrostatic approximation model can be made.

Two Degree of Freedom Model. Although much can be learned from a

single degree of freedom model, many of the current particle beam con-

trol elements require at least a two degree of freedom model. Analy-

sis of the dynamic behavior of a beam inside a quadrupole with vari-

able magnetic field, for example, could suggest totally new means of

beam control. It is recommended that an equilibrium solution be

sought for a beam with assumption (A6), the axial symmetry assumption,

removed.

System Classification. As was mentioned in Chapter IV, con-

ventional schemes for classifying systems of partial differential

equations are not well suited to control applications. It is recom-

mended that further investigation be conducted to establish classifi-

cations of such systems based upon both the operator A in the

abstract Cauchy problem, equation (2.1), and the underlying Banach

space N.

V-5
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Appendix A. Mathematical Symbols

Symbols that are frequently used in Chapter II are summarized

below. Page numbers are given, following each definition, to indicate

where the symbol was first introduced in the text.

f :A-B a function f which maps each element of set A
into an element of set B (II-1)

D(f), R(f) domain, range of the function f (11-1)

R, C real, complex field of scalars (11-2)

Re(z) real part of complex number z (11-10)

R C re-l, complex, n-fold Cartesian product of R, C
(11-2)

n
intervals in R, R(-2)

H X. Cartesian product of spaces X i =

=1 i(11-2)

LP (2), H q ( 2 ) Lebesgue, Sobolev space of order p , q over

interval 2 (11-2)

If Ix norm of f on space X (11-2)

(u, v) inner product of u, v (11-24)

B(XY), B(X) set of all bounded linear operators from X into

y, from X into X (11-3)

A-i



C(X,Y), C(X) set of all closed linear operators from subset of
X into Y , from subset of X into X (11-5,6)

Cc (2) set of all functions which are continuous, have
continuous derivatives of all orders, and which
have support bounded and contained in 0 (11-6)

C[a,b] set of all functions which are continuous in the

sup norm on [a,b] (11-27)

L () set of functions in L' (K) for every bounded,loC
Lebesgue measurable set K with closure contained
in 2Q (11-6)

d D9dx ' ordinary, partial differentiation symbols

(generalized derivatives implied unless otherwise
D stated) (11-6,7)x k ' x k

n

k x... k n i

6F 6F Gateaux, Frechet derivative of operator F at x
(ii-8)

p (A) resolvent set of linear operator A (11-9)

o(A) spectrum of linear operator A (11-9)

R(zA) (zI-A) - ' where zcp(A) (II-10)

3(M,3 ) ,G' (MS) see Definition 2.3 (11-10)

support of f" the set of points: Lx: f(x) # 01

A-
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APPendix B. Physics Symbols

The following symbols are introduced in Chapter III and are

summarized here for convenience. Page numbers in parentheses

following the definitions indicate where the symbol was first used or

defined.

m particle rest mass (111-4)

q particle charge (111-4)

c vacuum speed of light (111-4)

absolute dielectric constant (111-8)I 0

Po absolute magnetic permeability of free space
(111-8)

W cyclotron frequency (111-27)c

Wplasma frequency (111-27)P

1 (ij,k) : (1,2,3), (2,3,1), or (3,1,2)

Fijk -1 (i,j,k) = (1,3,2), (2,1,3), or (3,1,2)

0 otherwise

magnitude of vector (111-4)

v microscopic velocity vector (111-5)

B-i



microscopic momentum vector (111-5)

n (x, t) number density (111-5)

V (X, t macroscopic velocity vector (111-5)

P (X,t) macroscopic momentum vector (111-5)

f distribution function (111-5)

{f(x,.a,t)/n(x,t) n(x,t) > 0

f*_(px- (Page 111-7)

0 n(x,t) =0

J(x,t) current density vector (111-6)

E (x, t) electric field vector (111-4)

B (x, t) magnetic field va' tor (111-4)

P pressure tensor (111-6)

T r transformation matrix (111-19)
X
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• AopendixC. Completeness of M (0, R)

In Chapter IV the space M (OR)is defined as follows:

M1 (O,R) = {f: 11xfDLl (O,R) 
<

If II141 (0,R) = IlxfIIL1 (0,R)

It is asserted in that chapter that M1 (0, R) is a Banach space and

this is now proven.

Theorem C.I

The space M' (0, R)is a Banach space.

Proof

It is obvious that M1 (O,R) is a normed linear space. To show

completeness, let 9g mCM (O,R) be a Cauchy sequence. Defining

functions fi by

f.(x) = xg (x) (O<x<R)i 1

it is clear that {fi} 1 CL (O,R) . But this sequence is Cauchy in

L' (O,R) since

C-i
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Im-fnIlL 1(OR) = 1X(<g -g9)jL 1( 0,R)

-- gm-gnJIM1 (O,R)

and, as gi}0 is Cauchy, there exists an N for every £>O such

that

(OR) < Vm,n > N

Slfm-nhL'( oR) < V Vm,n > N

Since L1 (O,R) is complete, the sequence {fi} 1  converges to an

element f in L1 (0 ,R). Let a function g be defined by

g(x) = -f(x) (O<x<R)
X

Now gEM' (0,R) since

M' (o, R) L (0xf)l1 o,R) = lf ln' (O,R)

The sequence 1g 1 1 then, converges to g since

I5

ilgi-glkl (0,R) I \ix gi-g)ln (0,R) Ii- 11C (,R)

and fif in the L' (O,R) norm. Thus, every Cauchy sequence in

M1 (0,R) converges to an element in M1 (0, R)

C-2
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AppendiZ D.IA Three Dearee-of-Freedom

Linear Model

As stated in the footnote on page 111-17, the linearization proc-

ess is in no way limited to a single degree-of-freedom model. By

applying the same techniques used in Chapter III to the system of

equations on pages 111-20 and 111-21, with the rigid rotor equilibrium

solution (equation 3.60), one can derive a linear model with the fol-

lowing form:

d_
dw(t) = Aw(t) + g(t)

I l The symbol w(t) is given by

6n(r, t)
6V (r,t)
.Ve (r, t)
SV (r,t)

6E (r,t)

w(t) = cE 0(r,t) ; r = (r,e,z)
5E (r,t)

B (r,t)

B (r,t)

SB (r,t)

The operator A is expressed in detail on the following page, and

D-1
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g(t) = qG(r)u(t)m ..

0 0 0 0 0 0 E(r,t)

1 0 0 0 -V °  -wr Ee r t )
Z

V 0 Ee(r,t)

_ I
0 1 0  0 0 ,Be(rt)

r --

e
o 0 1 W r 0 0 .B r t)rI

* Be (r t)

eI
B (r,t)

z

Note that the form of the differential equation above is identi-

cal to that of equation (3.71), the single degree-of-freedom case.
10

The vector w(t) is an element of a function space X = 2 X1  where
i=l

each X. is an appropriately defined space of functions defined on a
3

subset of R3 . The dimension of the space is now ten rather than

nine, since the perturbed radial magnetic field is identically zero in

the single degree-of-freedom case.
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Dynamic models of a charged particle beam subject to external electromag- j
netic fields are cast into the abstract Cauchy problem form. Various appli-

cations of intense charged particle beams, i.e., beams whose self electromag-

netic fields are significant, might require, or be enhanced by, the use of

dynamic control constructed from suitably processed measurements of the state of

the beam. This research provides a mathematical foundation for future engineer-

ing development of estimation and control designs for such beams.

Beginning with the Vlasov equation, successively simpler models of intense

beams are presented, along with their corresponding assumptions. Expression of

a model in abstract Cauchy problem form is useful in determining whether the

model is well posed. Solutions of well-posed problems can be expressed in terms

of a one-parameter semigroup of linear operators. (ihe state transition matrix

for a system of linear, ordinary, first-order, constant coefficient differential

equations is a special case of such a semigroup.) The semigroup point of view

allows the application of the rapidly maturing modern control theory of infin-

ite-dimensional systems.

An appropriate underlying Banach space is identified for a simple, but non-

trivial, single degree of freedom model (the Welectrostatic approximation mod-

e!"), and the associated one-parameter semigroup of linear operators is charac-

.erized.
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